國立臺灣師範大學 109 學年度碩士班招生考試試題 科目:無機化學 適用系所: 化學系 注意:1.本試題共2頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。 - 1. Explain the following terms: (12 points) - (a) Lewis acid (b) Brønsted acid (c) Electronegativity. - 2. The ion NO⁻ can react with H⁺ to form a chemical bond. Which structure is more likely, HON or HNO? Explain your reasoning. (8 points) - 3. Briefly describe the following terms: (12 points) - (a) Semiconductor (b) CVD (c) quantum dot. - 4. Determine the point groups for: (10 points) 5. Determine the point group and the number of IR- and Raman-active C-O stretching vibrations for Fe(CO)₅. (8 points) | D_{3h} | E | 2C ₃ | 3C ₂ | σ_h | 2S ₃ | $3\sigma_{V}$ | | | |----------|---|-----------------|-----------------|------------|-----------------|---------------|----------------|------------------| | A,' | 1 | 1 | 1 | 1 | 1 | 1 | | $x^2 + y^2. z^2$ | | A_2' | 1 | 1 | -1 | 1 | 1 | -1 | R _z | | | E' | 2 | -1 | 0 | 2 | - 1 | 0 | (x, y) | (x^2-y^2,xy) | | A_1 " | 1 | 1 | ì | -1 | -1 | -1 | | | | A2" | 1 | 1 | -1 | -1 | -1 | 1 | Z | | | E" | 2 | -1 | 0 | -2 | I | 0 | (R_x, R_y) | (xz. yz) | - 6. Allotropes are different structural modifications of an element. Diamond, graphite, graphene, carbon nanotubes, graphyne and fullerene are allotropes of carbon. (10 points) - (a) Which material has been awarded by Nobel Prize in Chemistry? (2 points) - (b) Which material has been awarded by Nobel Prize in Physics? (2 points) - (c) Which material is composed of carbon-carbon triple bond? (2 points) - (d) Which materials can be semiconductors? (4 points) ## 國立臺灣師範大學 109 學年度碩士班招生考試試題 7. Draw Lewis structures (see example) with reasonable molecular shapes and then assign steric numbers (SN) of sulfur atoms for thiosulfate (S₂O₃²-), dithionite (S₂O₄²-), and peroxodisulfate (S₂O₈²-). (12 points) An example: SO₄²-(SN=4) - 8. Cobalt (II) chloride ($CoCl_2 \cdot nH_2O$, for n = 0-9) solids can be blue (anhydrous, n=0) or purple (hydrates, n=6). (14 points) - (a) Anhydrous CoCl₂ is octahedrally coordinated. What is the coorindation number(s) of chlorine (Cl)? Caluclate or rationalize it. (2 points) - (b) Hexahydrated CoCl₂ is purple and also octahedrally coordinated. Draw all possible structures with coordinated hydrates. (4 points) - (c) Use spectrochemical series (H₂O > > Cl⁻) to explain origin of color difference between anhydrous (blue) and hydrated CoCl₂ (purple). (4 points) - (d) Besides UV-vis, give one technique (or instrumentation) that can be used to distinguish anhydrous and hydrated CoCl₂ solids? Explain. (4 points) - 9. Carbon monoxide is a common ligand in organometallic chemistry. CO can bond to a single metal or bridge between two (μ₂-CO) or more metals. (14 points) - (a) Draw the structures of Fe₂(CO)₉ and Mn₂(CO)₁₀. (4 points) - (b) Predict which of the complex [V(CO)₆], [Cr(CO)₆], [Mn(CO)₆]⁺ has the shortest C-O bond? (4 points) - (c) Which ligand (NO+, NO, or NO-) is isoelectronic with CO? (2 points) - (d) Cyanide (CN⁻) is isoelectronic with CO but tends to bond to the metals having higher oxidation states. Explain why CN⁻ is a stronger σ-donor but weaker π-acceptor than CO. (4 points)