國 立 宜 蘭 大 學

109學年度研究所碩士班考試入學

物理化學(含熱力學與動力學)試題

(化學工程與材料工程學系碩士班)

准考證號碼:

《作答注意事項》

- 1.請先檢查准考證號碼、座位號碼及答案卷號碼是否相符。
- 2.考試時間:100分鐘。
- 3.本試卷共有 9 題,共計100分。
- 4.請將答案寫在答案卷上。
- 5.考試中禁止使用手機或其他通信設備。
- 6.考試後,請將試題卷及答案卷一併繳交。
- 7.本試卷採雙面影印,請勿漏答。
- 8.本考科可使用非程式型(不具備儲存程式功能)之電子計算機。
- 9.試題最後一頁另備計算紙1張。

109學年度研究所碩士班考試入學 化學工程與材料工程學系碩士班 物理化學(含熱力學與動力學)考科

第1頁,共2頁

- 1. Explain the following items: (20%)
 - (a) The first law of thermodynamics (b) Ideal gas (c) Law of corresponding states (d) Chemical potential (e) Phase rule.
- 2. Consider the reaction $2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$ carried out at 25 °C and 1 atm. Calculate ΔH° , ΔS° , and ΔG° using the following data. (15%)

Substance	ΔH_f° (kJ mol ⁻¹)	S° (J K ⁻¹ mol ⁻¹)
$SO_2(g)$	-297	248
$SO_3(g)$	-396	257
$O_2(g)$	0	205

- 3. (a) Derive the Gibbs-Helmholtz equation $\left[\frac{\partial}{\partial T}\left(\frac{\Delta G}{T}\right)\right]_P = -\frac{\Delta H}{T^2}$ from $\left(\frac{\partial \Delta G}{\partial T}\right)_P = -\Delta S$.
 - (b) Derive the van't Hoff equation $\frac{d\ln K_p^0}{d(\frac{1}{T})} = -\frac{\Delta H^0}{R}$ from Gibbs-Helmholtz equation. (10%)
- 4. A solution having composition p is cooled to just above the eutectic temperature (point s is about 0.18 x_{Si} , and x_e is 0.31 x_{Si}). (15%)
- (a) What is the amount of solid and liquid phase in percentage?
- (b) Calculate the composition of the solid and the liquid.

5. The turbine in a steam power plant takes steam from a boiler at 520 °C and exhausts it into a condenser at 100 °C. What is its maximum possible efficiency? (5%)

109學年度研究所碩士班考試入學 化學工程與材料工程學系碩士班 物理化學(含熱力學與動力學)考科

第2頁,共2頁

- 6. (a) Derive the Clausius-Clapeyron equation $\ln \frac{P_2}{P_1} = \frac{\Delta_{vap}H}{R} \left(\frac{1}{T_1} \frac{1}{T_2}\right)$.
 - (b) Benzene has a normal boiling point at 760 Torr of 353.25 K and $\Delta_{\text{vap}}H_m=30.76 \text{ kJ mol}^{-1}$. If benzene is to be boiled at 30.00°C in a vacuum distillation, to what value of *P* must the pressure be lowered? (15%)
- 7. Exactly one liter of a 0.100 M solution of a substance A is added to 3.00 liters of a 0.050 M solution of a substance B. Assume ideal behavior and calculate the entropy of mixing. (5%)
- 8. A certain first-order reaction has a half-life of 20.0 min. (10%)
 - (a) Calculate the rate constant for this reaction.
 - (b) How much time is required for this reaction to be 75% complete?
- 9. The rate constant for a reaction at 230 °C is found to be exactly twice the value at 220 °C. Calculate the activation energy. (5%)