東吳大學 109 學年度碩士班研究生招生考試試題

第1頁,共3頁

系級	化學系碩士班	考試時間	100 分鐘
科目	綜合化學	本科總分	100 分

※一律作答於答案卷上(題上作答不予計分);並務必標明題號,依序作答。

PartA:

- 1. Draw resonance structures for SCN⁻ (carbon is the central atom) (6 points)
- 2. Draw the possible isomers for the following compounds: (a) [Co(en)₃]³⁺ (2 points) (b) [Co(en)₂Cl₂] (3 points). (en = ethylenediamine)
- 3. Explain the following terms: (a) Pauli exclusion principle (b) Hund's rule (c) Nodal surface (d) Shielding effect. (8 points, 2 points for each)
- 4. Determine the number of unpaired electrons for each of the following complexes: (a) [Co(CO)₄]⁻ (T_d) (b) [Cr(CN)₆]⁴⁻ (O_h, low-spin) (c) [Fe(H₂O)₆]³⁺ (O_h, high-spin) (d) [Co(NO₂)₆]⁴⁻ (O_h, high-spin) (e) [Co(NH₃)₆]³⁺ (O_h, low-spin) (f) [Cu(H₂O)₆]²⁺ (O_h). (6 points, 1 point for each)

ニ、

- 1. The temperature of 4.05 moles of an ideal gas increases from 15 to 55°C as the gas is compressed adiabatically. Calculate q, w, $\triangle U$, and $\triangle H$ for this process assuming that $C_{V,m} = 3/2$ R. (8 points)
- 2. Pause lasers are useful sources of nearly monochromatic radiation. Lasers that emit photons in a pulse of 3.5 ns duration with a total energy in the pulse of 0.158 J at 835 nm. (4 points)
 - (a) What is the averages power (energy per unit time) in units of watts (a W = 1 J/s) associated with such a pulse?
 - (b) How many photons are emitted in such a pulse?
- 3. As known the function $\psi(x) = A(y/b)[1 (y/b)]$ is an acceptable wavefunction for the 1-D infinite depth box of length b. Calculate the normalization constant A and expectation value $\langle y \rangle$ and $\langle y^2 \rangle$ (6 points)
- 4. Determine the total collisional frequency for CO_2 at 2 atm and 300 K. And at what temperature would the collisional frequency be 20% of the value determined in previously state? As known for CO_2 , $\sigma = 5.2 \times 10^{-19} \text{ m}^2$ and M = 0.044 kg/mol. (7 points)

東吳大學 109 學年度碩士班研究生招生考試試題

第2頁,共3頁

系級	化學系碩士班	考試時間	100 分鐘
科目	綜合化學	本科總分	100 分

PartB:

- 1. Define the following terms: (20 分)
 - (a) Resonance fluorescence.
 - (b) Retention time.
 - (c) Liquid junction potential.
 - (d) Internal standard.
- 2. A 50 mL of 0.05M NaCN solution is titrated with 0.1M HCl. Calculate the pH after the addition of 10 mL of acid. Ka for HCN=6.2*10⁻¹⁰. (5 分)
- 3. Rank the following groups of compounds in order of decreasing solubility in water. (4 %)

(b) CH₃CH₂CH₂OH CH₃CH₂CH₂Cl

CH₃CH₂CH₂CH₂OH HOCH₂CH₂OH

- 4. Rank the following compounds from strongest acid to weakest acid. (4 分)
 - (a) HF HCl HBr HI
 - (b) H₂O NH₃ CH₄ HF

東吳大學 109 學年度碩士班研究生招生考試試題

第3頁,共3頁

系級	化學系碩士班	考試 時間	100 分鐘
科目	綜合化學	本科總分	100 分

- 5. Label each chiral carbon as (R) or (S). (4 分)
 - (a) OH (b) H $H \longrightarrow C_2H_5$ $H \longrightarrow CH_3$ $F \longrightarrow C_2H_5$ C_2H_5 C_2H_5
- 6. For S_N1 reaction: $RX + Nu^- \longrightarrow RNu + X^-$ which one makes the reaction faster? (4 %)
- (1) A: CH₃CH₂CH₂CH₂Br B: (CH₃)₃CBr (2) A: 1M CH₃OH B: 2M CH₃OH (3) A: 1M RX B: 2M RX
- (4) A: RI B: RBr
- 7. Classify the following species as aromatic, nonaromatic, or antiaromatic: (6 %)

8. Derive the structure of a compound $C_{11}H_{16}$ based on the following spectrum. (3 \mathcal{H})

