編號: 82 ## 國立成功大學 109 學年度碩士班招生考試試題 系 所: 化學工程學系 考試科目:無機化學及分析化學 考試日期:0210,節次:2 第1頁,共3頁 ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 Inorganic Chemistry and Analytical Chemistry (total points: 100) Part I: Inorganic Chemistry (total points: 50) - 1. Give the ground-state electron configurations of the copper molecule and its ions, Cu, Cu⁺, and the Cu²⁺. (6 pts) - 2. Give the valence electron count at the meal center for the following metal complexes, and indicate whether they obey the Effective atomic number (EAN) rule or not? (10 pts) - (a) $K(Ag(CN)_2)$; (b) $H(Mn(CO)_5)$; (c) $K_4(Fe(CN)_6)$; (d) $K_3(Cr(C_2O_4)_3)$; - (e) $(Co(H_2O)_6)Cl_2^{\circ}$ - 3. For each of the following pairs of complexes, indicate the one that has the larger ligand field stabilization energy (LFSE): (9 pts) - (a) $[Cr(H_2O)_6]^{2+}$ or $[Mn(H_2O)_6]^{2+}$ - (b) $[Mn(H_2O)_6]^{2+}$ or $[Fe(H_2O)_6]^{3+}$ - (c) $[Fe(H_2O)_6]^{3+}$ or $[Fe(CN)_6]^{3-}$ - 4. Predict which of the following complex is Jahn-Teller active (Jahn-Teller effect: describes the geometrical distortion of molecules and ions that result from certain electron configurations.) (5 pts) a) $[Cr(NH_3)_6]^{3+}$; b) $[Co(CN)_6]^{3-}$; C) $[Ti(H_2O)_6]^{3+}$ - 5. On the basis of Valence shell electron pair repulsion theory (VSEPR), predict the structures of XeF₄, NH₃, SF₆, and I₃. (8 points) - 6. Draw the models of the following molecules and answer the questions a) to (d) for each of them: CHCl₃; PCl₅; 1,5-dibromonaphthalene (12 pts) - (a) Does the molecule have an axis of symmetry? If so, is it 2-fold, 3-fold, or what? - (b) Does the molecule have an inversion center? - (c) Does the molecule have any mirror planes? If so, how many? - (d) What is point group of the molecule? ## 編號: 82 國立成功大學 109 學年度碩士班招生考試試題 系 所:化學工程學系 考試科目:無機化學及分析化學 考試日期:0210,節次:2 第2頁,共3頁 Part II: Analytical Chemistry (total points: 50) - 7. A spectrum has a signal-to-noise ratio (S/N) of 25/1 which means that a signal, S, with 4% uncertainty, e. $(S\pm e=25\pm 4)$ - (a) Using the rules for propagation of uncertainty to show that the signal = $25n/\sqrt{n}$ for overlapping n spectra. (5 pts) - (b) How many spectra must be averaged to increase the S/N to 100/1? (3 pts) - 8. Mn was used as an internal standard for measuring Fe by atomic absorption. A standard mixture containing 2.50 μ g/mL Mn and 2.50 μ g/mL. Fe gave a quotient (Fe signal area/Mn signal area) 1.05/1.00. A solution was prepared by mixing 10.00 mL of unknown Fe solution with 10.00 mL of standard containing 8.5 μ g/mL Mn, and diluting to 50.00 mL; the measured absorbance signal area at the Fe wavelength was 0.200, and at the Mn wavelength was 0.120. - (a)Calculate the molar concentration of Fe in the original unknown solution. (4 pts) - (b) if, a standard mixture containing 2.50 μ g/mL Mn and 10.00 μ g/mL. Fe gave a quotient (Fe signal area/Mn signal area) 1.05/1.00. Calculate the molar concentration of Fe in the original unknown solution (4 pts) - 9. Explain the difference between(a) Scanning electron microscope (SEM) and transmission electron microscope (TEM); (b) fluorescence and phosphorescence; (c) Small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS); (d) Differential scanning calorimetry (DSC) and differential thermal analysis (DTA). (8 pts) - 10. From the following reduction potentials, $$Fe^{3+}(aq)+e^{-} \longrightarrow Fe^{2+}(aq) \quad E^{0}=0.77V \quad \text{and} \quad I_{2}(s)+2e^{-} \longrightarrow 2I^{-} \qquad E^{0}=0.535 \text{ V}$$ - (a) Is $2Fe^{3+}(aq)+2I^{-}(aq) \rightarrow 2Fe^{2+}(aq)+I_{2}(s)$ reaction spontaneous at 25°C? (3 pts) - (b) Calculate the equilibrium constant of reaction in question (a) (5 pts) - 11. Propionic acid (CH₃CH₂CO₂H) dissociate as HA \rightleftharpoons H⁺+A⁻ K_a =1.34×10⁻⁵ - (a) calculate the pH and fraction of dissociation of 10⁻² M Propionic acid (4 pts) - (b) calculate the pH and fraction of dissociation of 10⁻¹⁰ M Propionic acid (4 pts) - 12. What compound, if any, will precipitate when 50.0 mL of 1.0 x 10^{-5} M Ba(OH)₂ (aq) is added to 50.0 mL 2.0 x 10^{-5} M Fe₂(SO₄)₃? (10pts) BaSO₄ (s) $$\leftrightarrow$$ Ba²⁺ (aq) + SO₄²⁻ (aq); K_{sp} = 1.1 x 10⁻¹⁰ Fe(OH)₃ (s) \leftrightarrow Fe³⁺ (aq) + 3 OH (aq); $K_{sp} = 2.6 \times 10^{-39}$ 編號: 82 ## 國立成功大學 109 學年度碩士班招生考試試題 系 所:化學工程學系 考試科目:無機化學及分析化學 第3頁,共3頁 考試日期:0210,節次:2 | | to the second to | ******* ******** | x~22.000 | | |--|--|---|---|--| | ∞ | 2 He | 2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38.48
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.38
2.3 | Race Caroline Control | | | 7 | eth- | li săli s_li | At A | | | 2 | © O-8 = € | # # B # B # B # B # B # B # B # B # B # | PPo
Programme
UUI
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programme
Programm | | | | ,zi en | A AS | Mark Comments of the | | | | 5 to 10 1 | 22 23 25 25 25 25 25 25 25 25 25 25 25 25 25 | 8 9 18 1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | —————————————————————————————————————— | **** | | # E 1 | | | 2 | | 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 84.45
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55
64.55 | | | | <u> </u> | 28.20
20.20
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40
24.40 | Au
Page 111
Reg man 111
Man 111
Man 1111
Man 111 | | | <u> </u> | Poor metals Transition | Name of the second seco | SC O O S | | | | metals | 2000 45 COUNTY C | 77 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | | | Metals Lanthanoids Actinoids | 8 | 8 6 8 3 ± 18 8 3 ± 18 8 3 ± 18 8 3 ± 18 8 3 ± 18 8 3 ± 18 8 3 ± 18 8 5 ± 18 8 ± 18 8 5 ± 18 8 ± 18 8 5 ± 18 8 ± 18 5 ± 18 8 ± 18 5 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 ± 18 8 | | | | Alkaline
earth metals | Minorana Sasara | те 2 | | | | Alkali metals | C C C C C C C C C C C C C C C C C C C | 4 V V V V V V V V V V V V V V V V V V V | | | | | 23 V V V V V V V V V V V V V V V V V V V | C. Tanganganganganganganganganganganganganga | | | 4 | C Solid Hg Liquid H Gas | 22 | | | | ~ | | Constitution of the second sec | 57-71
57-71
89-103 | | | | Atomic # Atomic # Atomic # 4 | 20 2000 2000 2000 2000 2000 2000 2000 | & 8 1 | | | | N = C = C = C = C = C = C = C = C = C = | Management and Company of the Compan | 6 CS
Continue to 200458
10 February
17 Fr
17 Fr
17 Fr
17 Fr
17 Fr
17 Fr
17 Fr
17 Fr | |