編號: 126

國立成功大學 109 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:自動控制

考試日期:0210,節次:2

第1頁,共2頁

※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. Consider a linear system as below

$$\dot{X} = AX + Bu + Br$$
$$y = CX$$

Please answer the following questions:

- (i) How to verify the controllability and observability of this linear system? (10%)
- (ii) Prove the Separation principle of estimation and control. (15%)
- 2. A state-space form is described as follows:
- (i) Calculate the steady state error of this system which has a unit step input. (10%)

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 3 & -2 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} r$$

$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$$

- (ii) Stabilize this system via using a state feedback controller u = -Kx and determine the value of K. (15%)
- 3. (i) Giving a set of initial conditions: $x_1(0) = 1$, $x_2(0) = 1$, $x_3(0) = 1$ and r(0) = 2, please

linearize the following nonlinear system around the operation point: $(x_1(0), x_2(0), x_3(0))$ and

r(0)). (13%)

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} x_1^2 x_2 x_3 \\ x_1 x_2 r \\ x_3 r^2 \end{bmatrix}$$

$$y = x_1$$

(ii) Calculate the transfer function: $G(s) = \frac{Y(s)}{R(s)}$. (12%)

編號: 126

國立成功大學 109 學年度碩士班招生考試試題

系 所:系統及船舶機電工程學系

考試科目:自動控制

考試日期:0210,節次:2

第2頁,共2頁

4. (i) Derive the state space form for the following system (10%)

Figure 1 A closed-loop control system

- (ii) What is the type of the controller applied in this control system? Why? (5%)
- (iii) Giving system parameters (A,B,C) as below, please find out K and K_e with roots of the desired characteristic equation are s=-1, s=-3, and s=-5.(10%)

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$