編號: 98 # 國立成功大學 109 學年度碩士班招生考試試題 系 所:土木工程學系 考試科目:土壤力學 考試日期:0210,節次:2 ### 第1頁,共2頁 ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 #### Make rational assumptions if needed. #### 一、簡答題 (20 pts): - 1. Define the Atterberg limits of fine-grained soils and describe the stress-strain diagrams at various states. (5 pts) - 2. Describe the falling head tests and derive the equation for measuring the hydraulic conductivity. (5 pts) - 3. Describe the Casagrande logarithmic method for determination the consolidation coefficient from Oedometer tests. (5 pts) - 4. Compare the similarity and differences between "compaction" and "consolidation". (5 pts) - _ . Refer to Fig. 1 and answer the following questions related to consolidation: (25 pts) - 1. Given $H_1=2.2$ m, $H_2=4.4$ m, and $H_3=7.4$ m, plot the vertical total stress, vertical effective stress, and pore pressure profiles from surface to 14.0 m deep <u>without surcharge</u>. (10 pts) - 2. Given $\Delta \sigma = 105$ kPa, calculate the primary consolidation settlement for soil stratum shown in Fig. 1. (10 pts) - 3. How long will it take in the field to achieve average consolidation of 80% (Given U_{avg} =0.85, T=0.567)? (5 pts) Fig. 1 Sand Clay - \equiv Answer the following questions related to shear strength of soils: (30 pts): - 1. A NC clay sample is subjected to SCD testing with an effective consolidation stress of 100 kPa. Plot the Mohr circle at failure, mark the pole, and find the failure plane for $\phi' = 30^{\circ}$. (10 pts) - 2. Find the total and effective strength parameters and plot the total and effective stress paths for the 編號: 98 ## 國立成功大學 109 學年度碩士班招生考試試題 系 所:土木工程學系 考試科目:土壤力學 考試日期:0210,節次:2 第2頁,共2頁 following conditions: SCU on loose sand, $\sigma_3^{\bullet} = 100$, $\Delta \sigma_{d,f} = 125$, $\Delta u_f = 75$ (unit: kPa). (15 pts) 3. In MIT stress path method, the K_f-line is expressed as $q = m + p' \tan \alpha$, express (m, α) with Mohr-Coulomb strength parameters (c', ϕ') . (5 pts) 四、Answer the following questions related to seepage: (25 pts): - 1. Derive the governing equation for 2D steady state flow and list the assumptions during the derivation process. (10 pts) - 2. Calculate the flow rate of Fig. 2 in m³/sec/m and plot the flow net. (10 pts) - 3. Calculate the flow rate in Fig. 2 in m^3 /sec/m with anisotropic permeability k_v =0.075 cm/sec and $$\frac{k_H}{k_V} = 4. (5 \text{ pts})$$ Fig. 2