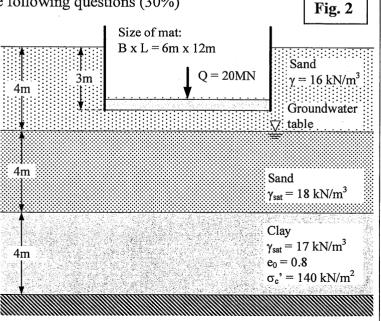
編號: 103

國立成功大學 109 學年度碩士班招生考試試題

系 所:土木工程學系

考試科目:基礎工程


第1頁,共2頁

考試日期:0210,節次:1

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. Fig. 1 shows a surface foundation subjected to a vertical load Q = 200 kN and a moment M = 50 kN-m. Please answer the following questions (30%).
 - (1) Soil samples obtained from the site are composed of cohesionless sand (c'=0). A consolidated drained triaxial test was conducted on one of the samples at a confining pressure $\sigma_3'=150 \text{ kN/m}^2$. Failure occurred when the deviator stress ($\sigma_1'-\sigma_3'$) = 300 kN/m². Determine the <u>effective stress</u> angle of friction, ϕ' of the soil, based on the given information. (10%)
 - (2) Check if the load eccentricity causes a separation between the foundation and the soil (5%).
 - (3) Use general bearing capacity equation and effective area method proposed by Meyerhof to check if the bearing capacity of the foundation meets the required factor of safety for long-term loading (15%).

Fig. 1	Q = 200 kN		Bearing capacity factors			
116.1		ϕ'	N _c	N_q	N_{γ}	
	M = 50 kN-m	26	22.25	11.85	12.54	
	2° •	27	23.94	13.20	14.47	
·#		28	25.80	14.72	16.72	
		29	27.86	16.44	19.34	
		30	30.14	18.40	22.40	
		31	32.67	20.63	25.99	
	$B \longrightarrow c' = 0,$	$\phi' \neq 0$ 32	35.49	23.18	30.22	
		$\psi + 0$ 33	38.64	26.09	35.19	
	$B=2 \text{ m}, L=2 \text{ m}$ $\gamma = 16 \text{ J}$	KIN/m 34	42.16	29.44	41.06	
		35	46.12	33.30	48.03	
Shape factors	$F_{cs} = 1 + \left(\frac{B}{L}\right) \left(\frac{N_q}{N_c}\right)$	$F_{qs} = 1 + \left(\frac{H}{I}\right)$	$\left(\frac{3}{2}\right) \tan \phi'$	$F_{\gamma s} = 1 -$	$0.4\left(\frac{B}{L}\right)$	

- 2. Fig. 2 shows a mat foundation. Please answer the following questions (30%)
 - (1) Determine the average <u>net pressure on soil</u> caused by the mat foundation (5%).
 - (2) Assuming the mat foundation can be regarded as a uniformly loaded flexible rectangular area, estimate the stress increase caused by the mat foundation below its center at the middle of clay layer based on the 2:1 method (10%).
 - (3) Given: $C_c = 0.48$ and $C_s = 0.25$ C_c . Estimate the <u>consolidation settlement</u> of the clay layer under the center of the mat (using the stress increase at the middle of the clay layer as the average) (15%).

編號: 103

國立成功大學 109 學年度碩士班招生考試試題

系 所:土木工程學系

考試科目:基礎工程

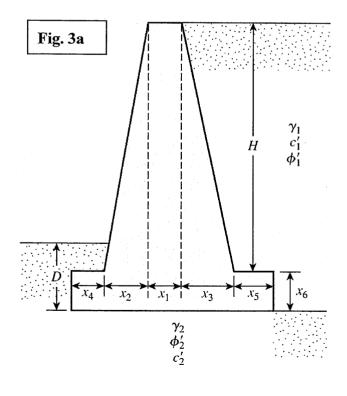
考試日期:0210,節次:1

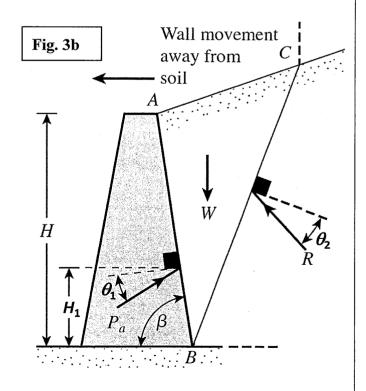
第2頁,共2頁

3. For the cantilever retaining wall as in Fig3a ($\gamma_{\text{concrete}} = 24 \text{ kN/m}^3$), give the following data.

Wall dimensions:

$$H = 8 \text{ m}, D = 2 \text{ m}, x_1 = 1 \text{ m}, x_2 = x_3 = 1.5 \text{ m}, x_4 = x_5 = x_6 = 1 \text{ m}$$


Soil properties:


$$\gamma_1 = 16.5 \text{ kN/m}^3$$
, $\phi_1' = 35^\circ$, $c_1' = 0$;

$$\gamma_2 = 18 \text{ kN/m}^3, \ \phi_2' = 24^\circ, \ c_2' = 18 \text{ kN/m}^2.$$

Please answer the following questions (40%).

- (1) Calculate the <u>Rankine active force per unit length of the wall</u> (with the simplified assumption for design). (10%)
- (2) Calculate the corresponding overturning moment about the toe. (5%)
- (3) Calculate the factor of safety against overturning (neglect the passive force in front of the wall). (10%)
- (4) Following (a), calculate the factor of safety against sliding (neglect P_p). (10%) [friction angle between the soil and the base $\delta' = (2/3)\phi'$; adhesion between the soil and the base $c'_a = (2/3)c'$]
- (5) Refer o Fig 3b., determine the angle of active force P_a to the normal drawn to \overline{AB} , θ_1 , and the angle of soil reaction R to the normal drawn to \overline{BC} , θ_2 , based on Coulomb's active earth pressure theory (5%).

