編號: 69

國立成功大學 109 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:自動控制

考試日期:0210,節次:1

第1頁,共2頁

- ※ 考生請注意:本試題可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. (25%) Consider the system shown below,
 - (1) (10%) Determine the range of K_l allowable so that the steady state tracking error is $|e_{ss}| \le 1\%$.
 - (2) (15%) Determine a suitable value for K_1 and K so that the magnitude of the steady-state error due to a disturbance $T_d(t)=2t$ (mrad/s, $0 \le t < 5s$), is less than 0.1 mrad/s.

- 2. (25%) A dynalens is designed to reduce the effect of rapid scanning motion as shown below. A maximum scanning motion of 25°/s is expected. Let $K_g = K_t = 1$ and assume that τ_g is negligible.
 - (1) (5%) Derive the error of the system in s-domain, E(s).
 - (2) (10%) Determine the necessary loop gain $K_aK_mK_t$ when a 1°/s steady-state error is allowable.
 - (3) (10%) The motor time constant τ_m =0.40s. Determine the necessary loop gain so that the settling time (to within 2% of the final value of V_b) is $T_s \le 0.03$ s.

編號: 69

國立成功大學 109 學年度碩士班招生考試試題

系 所:機械工程學系

考試科目:自動控制

考試日期:0210, 節次:1

第2頁,共2頁

3. (20%) A positioning system is sketched below.

- (1) (10%) Noting $V_d(s)=sY_d(s)$, obtain the transfer function $Y(s)/Y_d(s)$. Obtain the steady state error for $y_d(t)=a \cdot t$ where a is a constant.
- (2) (10%) Let $\tau=1$ and k=10. Find the values for k_{cv} , k_{cp} and k_{ip} so that three closed loop poles are at -9, $-6\pm6j$. Fix k_{cp} and k_{ip} to the values that you found and obtain the root locus for k_{cv} varying from 0 to ∞ .
- 4. (30%) The plant is described by

$$G(s) = \frac{1}{s} \cdot \frac{1-2s}{1+2s}$$

- (1) (10%) Draw a unit step response of the plant (your sketch must include crucial information such as initial slope, final value, etc.)
- (2) (16%) Sketch Bode and Nyquist plots of $G(j\omega)$.
- (3) (4%) Is the unity feedback system (answer.)