編號: 138、168

國立成功大學 109 學年度碩士班招生考試試題

所:航空太空工程學系、能源工程國際項生變位學程

考試科目: 恐九學

考試日期:0210,節次:/

第1頁,共2頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
- 1. For a gas obeying the van der Waals equation of state $(p = \frac{\bar{R}T}{\bar{v}-b} \frac{a}{\bar{v}^2})$,
 - (a) show that $\left(\frac{\partial c_v}{\partial v}\right)_T = 0$. (5%)
 - (b) show that $(s_2 s_1)_T = R \cdot \ln \frac{v_2 b}{v_1 b}$. (5%)
 - (c) develop expression for $c_p c_v$. (5%)
- 2. Determine the Gibbs function of formation of methane at the standard state, 25°C and 1 atm, in kJ/kmol, and compare with the value given in Table A. (15%)

Table A
Thermochemical Properties of Selected Substances at 298K and 1 atm

,	Substance	Formula	Molar Mass, M (kg/kmol)	Enthalpy of Formation, \bar{h}_i^o (kJ/kmol)	Gibbs Function of Formation, \bar{g}_i° (kJ/kmol)	Absolute Entropy, 5° (kJ/kmol·K)	Heating Higher, HHV (kJ/kg)	Values Lower, LHV (kJ/kg)
	Carbon Hydrogen Nitrogen Oxygen	C(s) H ₂ (g) N ₂ (g) O ₂ (g)	12.01 2.016 28.01 32.00	0 0 0	0 0 0	5.74 130.57 191.50 205.03	32,770 141,780	32,770 119,950
	Carbon monoxide Carbon dioxide Water Water	CO(g) CO₂(g) H₂O(g) H₂O(l)	28.01 44.01 18.02 18.02	-110,530 -393,520 -241,820 -285,830	-137,150 -394,380 -228,590 -237,180	197.54 213.69 188.72 69.95		_ _ _ _
	Hydrogen peroxide Ammonia Oxygen Hydrogen	H ₂ O ₂ (g) NH ₃ (g) O(g) H(g)	34.02 17.03 16.00 1.008	-136,310 46,190 249,170 -218,000	-105,600 -16,590 231,770 203,290	232.63 192.33 160.95 114.61		
	Nitrogen Hydroxyl Methane Acetylene	N(g) OH(g) CH₄(g) C₂H₂(g)	14.01 17.01 16.04 26.04	472,680 39,460 -74,850 226,730	455,510 34,280 —50,790 209,170	153.19 183.75 186.16 200.85	 55,510 49,910	— 50,020 48,220
•	Ethylene Ethane Propylene Propane	$C_2H_4(g)$ $C_2H_6(g)$ $C_3H_6(g)$ $C_3H_8(g)$	28.05 30.07 42.08 44.09	52,280 = 84,680 20,410 = 103,850	68,120 —32,890 62,720 —23,490	219.83 229.49 266.94 269.91	50,300 51,870 48,920 50,350	47,160 47,480 45,780 46,360
	Butane Pentane Octane Octane Benzene	$C_4H_{10}(g)$ $C_5H_{12}(g)$ $C_8H_{18}(g)$ $C_8H_{16}(I)$ $C_6H_6(g)$	58.12 72.15 114.22 114.22 78.11	126,150 146,440 208,450 249,910 82,930	-15;710 8,200 17,320 6,610 129,660	310.03 348.40 463.67 360.79 269.20	49,500 49,010 48,260 47,900 42,270	45,720 45,350 44,790 44,430 40,580
	Methanol Methanol Ethanol Ethanol	CH₃OH(g) CH₃OH(l) C₂H₅OH(g) C₂H₅OH(l)	32.04 32.04 46.07 46.07	-200,890 -238,810 -235,310 -277,690	-162,140 -166,290 -168,570 -174,890	239.70 126.80 282.59 160.70	23,850 22,670 30,590 29,670	21,110 19,920 27,720 26,800

3. Please show in both a schematic diagram of the system and a T-s diagram of the cycle for a regenerative gas turbine engine with an intercooling and a reheat. Please explain how the efficiency of the gas turbine engine can be improved by the regenerator, the intercooler and the reheater. (20%)

號: 138、[68

國立成功大學109學年度碩士班招生考試試題

所:航空太空工程學系、能源工程國際碩士學位母程

考試科目: 熱力學

考試日期:0210,節次:1

第2頁,共2頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 4. An insulated rigid tank is divided into two equal parts by a partition. Initially, one part contains n kmol of an ideal gas of nitrogen at a pressure p_1 and a temperature T_1 , and the other side is evacuated. The partition is now removed, and the gas fills the entire tank.
 - a). Determine the final temperature T_2 and the final pressure p_2 . (6 %)
 - b). Determine the total entropy change (kJ/K) during this process. (10 %)
- 5. Show that for an ideal gas undergoing a reversible, adiabatic process in a closed system obeys

$$pv^k = constant,$$

with constant specific heat ratio k. (14 %)

- 6. Air enters a compressor operating at steady state at a pressure of 1 bar, a temperature of 300 K, and a velocity of 6 m/s through an inlet with an area of 0.1 m^2 . At the exit, the pressure is 7 bar, the temperature is 450 K, and the velocity is 2 m/s. Heat transfer from the compressor to its surroundings occurs at a rate of 120 kJ/min. Employing the ideal gas model, with the universal gas constant $\bar{R} = 8.314$ kJ/kmol·K and $c_p = 1$ kJ/kg·K,
 - a). determine the mass flow rate \dot{m} at the inlet, and (10 %)
 - b). calculate the power input to the compressor, in kW. (10 %)