編號: 133、139、166

國立成功大學 109 學年度碩士班招生考試試題

所:航空太空工程學系、民航研究所、能源工程國際碩士學位學程

考試科目:工程數學

考試日期:0210,節次:3

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. For a differential equation 2xy' + y = 0
 - a. (2%) Show that 2xy' + y = 0 can be written as ydx + 2xdy = 0
 - b. (4%) Solve the differential equation using separable method
 - c. (2%) Is this differential equation exact?
 - d. (7%) If yes, solve. If not, look for an integrating factor and solve.
- 2. Solve the initial value problem, $y'' 6y' + 9y = e^{3x}$,
 - a. (3%) Solve the homogeneous solution
 - b. (5%) Solve the nonhomogeneous solution
 - c. (2%) Solve the initial problem, y(0) = 1, y'(0) = 1
- 3. (15%)

Using Frobenius Method to solve $x^2y'' + (x^2 + x)y' - y = 0$. Try to identify the series as expansions of known functions. Show the details of your work.

4. (20%)

Use Laplace inverse to solve the following equation:

$$Y(s) = \frac{1.151 \text{ s} + 0.1774}{s^4 + 0.739 \text{ s}^3 + 0.921 \text{ s}^2}$$

5. (20%)

$$\frac{\partial^2 T}{\partial x^2} + x = \frac{\partial T}{\partial t} \quad \text{in } 0 < x < 1 \text{, for } t > 0$$

with the boundary conditions of

$$\frac{\partial T}{\partial x} = 0$$
 at $x = 0$, for $t > 0$

$$T = a$$
 at $x = 1$, for $t > 0$

and the initial condition of $\,T=a\,$ at t=0, in $\,0\leq x\leq 1\,$

Find the solution of T(x, t).

6. (20%)

Find the finite Fourier consine transform of the function:

a)
$$f(x) = \begin{cases} 2 & \text{for } 0 \le x \le 0.5 \\ -1 & \text{for } 0.5 < x \le \pi \end{cases}$$
 (10%)

b)
$$f(x) = e^{-x}$$
 $0 \le x \le \pi$ (10%)