編號: 243

國立成功大學 109 學年度碩士班招生考試試題

系 所:統計學系 考試科目:數學

考試日期:0211,節次:1

第1頁,共2頁

- ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。
 - 1. Consider the $m \times m$ matrix $A = \alpha \mathbf{I}_m + \beta \mathbf{1}_m \mathbf{1}'_m$, where α and β are scalars, \mathbf{I}_m is the $m \times m$ identity matrix, and $\mathbf{1}_m$ is the $m \times 1$ vector having each component equal to 1.
 - a) (5%) Find the eigenvalues and eigenvectors of A.
 - b) (5%) Determine the eigenspaces and associated eigenprojections of A.
 - c) (10%) For which values of $\, \alpha \,$ and $\, eta \,$ will $\, A \,$ be nonsigular?
 - d) (10%) Using a), show that when A is nonsigular, then

$$A^{-1} = \alpha^{-1} \mathbf{I}_m - \frac{\beta}{\alpha(\alpha + m\beta)} \mathbf{1}_m \mathbf{1}_m'.$$

- e) (10%) Find the determinant of A.
- 2. Let matrices A, B, and C be given by

$$A = \begin{bmatrix} 1 & 2 & 5 \\ 2 & 1 & 4 \\ -1 & 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 & -1 \\ -2 & 2 & 2 \\ -1 & 3 & 1 \end{bmatrix}, \qquad C = \begin{bmatrix} 2 & 1 & -1 \\ 2 & 5 & 3 \\ -2 & -1 & 1 \end{bmatrix}$$

- a) (5%) Which of these matrices are diagonalizable?
- b) (5%) Which of these matrices have their rank equal to the number of nonzero eigenvalues?
- 3. (10%) Evaluate the integral $\iint_{\Omega} \sin\left(\frac{y-x}{y+x}\right) dx dy$; Ω the region in the first quadrant bounded by the lines x+y=1 and x+y=2.
- 4. a) (10%) If f and $\partial f/\partial x$ are continuous, then show the function

$$H(t) = \int_a^b \frac{\partial f}{\partial x}(t, y) \, dy$$

is continuous.

b) (10%) Use the identity

$$\int_0^x \int_a^b \frac{\partial f}{\partial x}(t, y) \, dy dt = \int_a^b \int_0^x \frac{\partial f}{\partial x}(t, y) \, dt dy$$

to verify that

$$\frac{d}{dx}\left[\int_a^b f(x,y)\,dy\right] = \int_a^b \frac{\partial f}{\partial x}(x,y)\,dy.$$

編號: 243

國立成功大學 109 學年度碩士班招生考試試題

系 所:統計學系

考試科目:數學

考試日期:0211,節次:1

第2頁,共2頁

5. (10%) Find the points on the sphere $x^2 + y^2 + z^2 = 1$ that are closest to and farthest from the point (2, 1, 2).

- 6. Set $f(x) = xe^x$.
 - a) (5%) Expand f(x) in a power series.
 - b) (5%) Integrate the series in a) and show that

$$\sum_{n=1}^{\infty} \frac{1}{n! (n+2)} = \frac{1}{2}.$$