國立臺灣師範大學 101 學年度碩士班招生考試試題

科目:物理化學

適用系所: 化學系

注意:1.本試題共3頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

答題注意事項:作答時需按題號順序依次作答,每大題內的小題亦需 按小題號順序作答,否則皆不予計分。

- · Quantum part:

1.(A)(6分)Write down the 2p_x, 2p_y and 2p_Z orbitals from the following Tables
Angular wavefunctions:

$$Y_l^m(\theta,\phi) = \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!}} P_l^m(\cos\theta) e^{im\phi}, \text{ where}$$

$$P_0^0(\cos\theta) = 1$$
 $P_1^0(\cos\theta) = \cos\theta$ $P_1^1(\cos\theta) = \sin\theta$ $P_1^{-1}(\cos\theta) = -0.5P_1^1(\cos\theta)$

Radial wavefunctions

$$R_1^0(\rho) = 2\left(\frac{Z}{a}\right)^{3/2} e^{-\rho/2} \quad R_2^0(\rho) = \frac{1}{\sqrt{8}} \left(\frac{Z}{a}\right)^{3/2} (2-\rho) e^{-\rho/2} \quad R_2^1(\rho) = \frac{1}{\sqrt{24}} \left(\frac{Z}{a}\right)^{3/2} \rho e^{-\rho/2}$$
where $\rho = \frac{2Zr}{na}$

- (B) (2 分)Why use p_x and p_y orbitals instead of p_1 and p_{-1} orbitals?
- (C) (6分)Show that these three orbitals are orthogonal

$$\int \sin\!\theta \cos\!\theta \, d\theta = \frac{\sin^2\theta}{2}$$

- 2. (A) (6 分)Which of the following molecules may show a pure rotational microwave or vibrational infrared absorption spectra (a) H₂, (b) CCl₄, (c) CH₂F₂
 - (B) (4分)Classify each of the following molecules as a spherical, symmetrical, linear or asymmetric rotors (a) CO₂ (b) CH₃OH (c) benzene (d) methane. (4分)How many normal modes of vibration for these molecules?
- 3. (A) (4 %)Derive the force constant expression for an oscillator modeled by Morse potential. [Morse potential: $V(R) = hcD_e\{1-exp(-a(R-R_e))\}^2$]
 - (B) (4分)From (A), the Morse oscillator has a finite number of bound states. Find an expression for the maximum value of the vibrational quantum number.

二、Thermodynamics part:

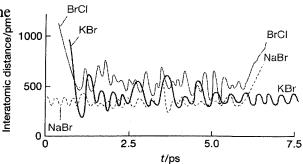
[Notations H: enthalpy, U: internal energy, S: entropy, S_sur: entropy of surroundings, S_total=S+S_sur, A: Helmholtz free energy, G: Gibbs free energy, p: pressure, T: temperature, V: volume, V_m : molar volume, n: number of moles, R: ideal gas constant, q: heat, w: work, $C_{V,m}$: molar heat

國立臺灣師範大學 101 學年度碩士班招生考試試題

capacity at constant volume, $C_{p,m}$: molar heat capacity at constant pressure, rev: reversible]

- 1. (單選題 5分, Choose the best answer.) In thermodynamics, △G (G denotes the Gibbs free energy) represents:
 - (A). maximum additional (non-expansion) work at constant T and V.
 - (B). maximum additional (non-expansion) work at constant T and P.
 - (C). maximum additional (non-expansion) work at constant V and P.
 - (D). maximum heat at constant T and V.
 - (E). maximum heat at constant T and P.
 - (F). maximum heat at constant V and P.
 - (G). work at constant T and V.
 - (H). work at constant T and P.
 - (I). work at constant V and P.
 - (J). maximum work at constant T and V.
 - (K). maximum work at constant T and P.
 - (L). maximum work at constant V and P.
 - (M). minimum work at constant T and V.
 - (N). minimum work at constant T and P.
 - (O). minimum work at constant V and P.
 - (P). heat at constant temperature(T) and volume (V).
 - (Q). heat at constant T and pressure (P).
 - (R). heat at constant V and P.
 - (S). maximum work at constant T.
 - (T). maximum work at constant P.
 - (U). maximum work at constant V.
- 2. (單選題 5 分,Choose the best answer) The temperature dependence of molar internal energy of an ideal gas can be expressed by $U_m(T)=U_m(0)+f(T)$ where $U_m(0)$ is the molar internal energy at T=0. For a nonlinear polyatomic ideal gas, considering translation and rotation only, the f(T) can be approximately expressed in classical limit by
 - (A) RT/2 (B) 2RT/2 (C) 3RT/2 (D) 4RT/2 (E) 5RT/2 (F) 6RT/2 (G) 7RT/2 (H) 8RT/2 (I) 9RT/2
 - (J) RT/3 (K) 2RT/3 (L) 4RT/3 (M) 5RT/3 (N) 7RT/3 (O) 8RT/3 (P) 5RT (Q) 6RT (R) 7RT
 - (S) 8RT (T) 9RT.
- 3. (單選題 5 分): The van't Hoff equation is d(ln K)/dT=
 - (A) $-\Delta U/(RT^2)$ (B) $\Delta (U-TS)/(RT^2)$ (C) $\Delta U/(RT^2)$ (D) $-\Delta (U-TS)/(RT^2)$ (E) $-\Delta H/(RT^2)$
 - $(F) \ \Delta \ (H-TS)/(RT^2) \quad (G) \ \Delta H/(RT^2) \quad (H) \ -\Delta \ (H-TS)/(RT^2) \quad (I) \ -\Delta A/(RT^2) \quad (J) \ \Delta \ (A-TS)/(RT^2)$
 - $(K) \ \Delta A/(RT^2) \quad (L) \ -\Delta \ (A-TS)/\ (RT^2) \quad (M) \ -\Delta G/(RT^2) \quad (N) \ \Delta \ (G-TS)/\ (RT^2) \quad (O) \ \Delta G/(RT^2)$
 - (P) $-\Delta$ (G-TS)/(RT²).

國立臺灣師範大學 101 學年度碩士班招生考試試題


- 4. (單選題 5 分): For a van der Waals gas, $(\partial S/\partial V)_T$ =?[a and b are van der Waals coefficients] (A)3R/(V_m-b) (B)2R/(V_m-a) (C) R/(V_m-b) (D) (RV_m+b)/(2pV_m-RT) (E)(RV_m+2b)/(2pV_m-RT) (F)(RV_m+3b)/(2pV_m-RT) (G)(RV_m+4b)/(2pV_m-RT) (H) (RV_m+b)/(2pV_m-2RT) (I) R/p (J) 2R/p (K) R/(2p) (L) 3R/p (M) R/(3p) (N)4R/p (O)R/(4p) (P) a+bR (Q) a-bR (R) a-2bR.
- 5. (複選題 5 分,全對才給分!) For an ideal gas undergoing an adiabatic reversible change from (V_i, p_i, T_i) to (V_f, p_f, T_f), where i and f denote initial and final states, respectively, which ones of the following are correct? [c=C_{V,m}/R, γ=C_{p,m}/C_{V,m}]
 (A)V_iT_i^c=V_fT_f^c (B) VT^c=constant (C) p_iV_i^c=p_fV_f^c (D)Entropy change is zero. (E) V_iT_i^γ=V_fT_f^γ.
- 6. (填充題 5 分,全對才給分!): Clapeyron equation is an equation describing slopes of phase boundaries. Its mathematical form is usually expressed as $dp/dT = \Delta_{transition} X/\Delta_{transition} Y$ where X and Y are thermodynamical quantities which are needed to be identified. What is X? X=(6A) What is Y? Y=(6B).
- 三、Dynamics part:
- 1. (8 \Re) The rate of the reaction, A \to B, can be expressed as $\frac{d[A]}{dt} = k[A]^{1/2}$.
 - (A) Derive the integrated rate equation for this reaction.
 - (B) Derive the half-life for this reaction in terms of k and [A].
- 2. (10 %)Derive the rate law for the decomposition of ozone in the reaction, $2O_{3(g)} \rightarrow 3O_{2(g)}$, on the basis of the following proposed mechanism:

1.
$$O_3 \rightarrow O_2 + O$$
 k_1

$$2. O_2 + O \rightarrow O_3 \qquad k_2$$

$$3. \quad O + O_3 \rightarrow O_2 + O_2 \qquad k_3$$

3. (6分)The figure displayed on the right represents the trajectory of a reaction of two diatomic molecules, which illustrates the relative distances between the atoms.

- (A) Write the chemical equation for this reaction.
- (B) Estimate the lifetime of the transition complex.
- (C) Does this trajectory provide the information of activation energy? If yes, what is the activation energy of reaction?
- 4. (10 分)The pre-exponential factor A for a gas-phase reaction, $A + A \rightarrow A_2$, is 4.0×10^5 M⁻¹s⁻¹ and its activation energy is 65.4 kJ/mol. Calculate the Gibbs energy of activation for this reaction at 300 K.