編號: 173

國立成功大學 109 學年度碩士班招生考試試題

系 所:電機工程學系

考試科目:資料結構

考試日期:0210,節次:2

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 1. Three of the following statements are incorrect. Pick out and correct them. (15 points)
 - (A) If T(n)=2T(n/2)+O(n) and T(1)=O(1), then $T(n)=O(n\log n)$.
 - (B) If T(n)=T(n/2)+O(n) and T(1)=O(1), then T(n)=O(n).
 - (C) $n^{10}+1.1^n=O(n^{10})$
- (D) $2n^2+1.5n\log^5 n = O(n^2)$
- (E) The number of odd degree nodes in an undirected graph must be odd.
- (F) To obtain the breadth first search tree of a graph, we need to use a stack data structure.
- 2. Suppose that you are asked to code a C function subprogram to compute the Fibonacci sequence, which is recursively defined as $F_n = F_{n-1} + F_{n-2}$, $F_0 = F_1 = 1$. In particular, you are asked to get the value of F_{500} . Will you code it as a recursive function or an iterative function? Why? (10 points)
- 3. The following array represents a complete binary tree. Adjust it to be a max heap by **showing each** step. (15 points)

10	9.	20	6	15	48	14	8	90	17

- 4. (a) Give conditions under which quick sort algorithm has the worst case behavior in terms of time complexity. Explain your answer. (10 points)
 - (b) Which sorting algorithm(s) is (are) stable, bubble sort, quick sort, merge sort, heap sort? (10 points)
- 5. Let G = (V, E) be a weighted undirected graph with any two vertices connected by at most one edge and H be a subgraph of G obtained by deleting an edge e_i from G, i.e., $H = (V, E \{e_i\})$. True or false? Explain if false. (15 points)
 - (a) Minimal cost spanning tree of G is unique.
 - (b) The path from vertex A to vertex B on a minimal cost spanning tree of G is a shortest path from A to B.
 - (c) If the total cost of minimal cost spanning tree of H is greater than that of G, then e_i must be an edge in any minimal cost spanning tree of G.
- 6. Consider a sequence of keys: 27, 49, 17, 20, 61, 23, 92, 33, 77, 11, 31.
 - (a) Draw, step by step (showing clearly the type of rotation used), the result of inserting these keys into an empty AVL tree. (20 points)
 - (b) Write down the inorder sequence of the AVL tree in (a).

(5 points)