國立暨南國際大學 109 學年度碩士班入學考試試題

科目:物理化學

編號:374

適用:應化系

1.依次序作答,只要標明題號,不必抄題。

2.答案必須寫在答案卷上,否則不予計分。

共一 頁

頁

1. Explain the following terms (a) Chemical potential, (b) Second law of thermodynamics,

%).

2. Calculate the changes in work, heat, internal energy, and entropy of the system, when 2 mol of argon at 300 K in a container of 0.5 dm³ is allowed to expand to 1.0 dm³ against a constant external pressure of 1.0 bar. (20 %) Hint: $\ln 2 = 0.69$

(c) Space quantization, (d) Pauli exclusion principle, and (e) Boltzmann distribution. (20

3. Derive the equation for the internal pressure of a gas $\pi_T = T \left(\frac{\partial p}{\partial T}\right)_V - p$

4. Suppose that a molecular orbital has the (unnormalized) form A + 2B. Find a linear combination of the orbitals A and B that is orthogonal to this combination and determine the normalization constants of both combination using the overlap integral S ($\int ABd\tau$) = 0.25. (20%)

5. Write down the secular determinates for (a) linear H₃ and (b) cyclic H₃, within the Huckel approximation. (10%)

6. Consider a second-order reaction of the type $A+2B \rightarrow P$ carried out in a solution that was initially 0.060 mol dm⁻³ in A and 0.030 mol dm⁻³ in B. After 100 s, the concentration of B had fallen to 0.010 mol dm⁻³. (a) Derive the integrated rate law of the product, and (b) calculate the rate constant. (20%)

