國立中正大學 109 學年度碩士班招生考試

試題

[第3節]

科目名稱	統計學	
系所組別	經濟學系國際經濟學-	甲組乙組

-作答注意事項-

- ※作答前請先核對「試題」、「試卷」與「准考證」之<u>系所組別、科目名稱</u>是否相符。
- 1. 預備鈴響時即可入場,但至考試開始鈴響前,不得翻閱試題,並不得書寫、 畫記、作答。
- 2. 考試開始鈴響時,即可開始作答;考試結束鈴響畢,應即停止作答。
- 3.入場後於考試開始 40 分鐘內不得離場。
- 4.全部答題均須在試卷(答案卷)作答區內完成。
- 5.試卷作答限用藍色或黑色筆(含鉛筆)書寫。
- 6. 試題須隨試卷繳還。

國立中正大學 109 學年度碩士班招生考試試題

科目名稱:統計學

本科目共2頁 第1頁

系所組別:經濟學系國際經濟學-甲組、乙組

Part I:填空題 (每格5分,共50分)

注意事項:

- (1) 此部分不須計算過程。
- (2) 請不要使用「選擇題作答區」作答。
- (3) 請自行於作答區第一頁「選擇題作答區」的下面製作如下的填空題作答區:

(a)	(b)	(c)	(d)	(e)
(f)	(g)	(h)	(i)	(j)

- 1. (30%) Let X and Y be continuous random variables with the joint probability density function $f_{XY}(x,y) = ce^{-x-y}$, $0 \le x < \infty$, $0 \le y < \infty$, where c is a constant. Then $c = \underline{\hspace{1cm}}$ (a) $\underline{\hspace{1cm}}$, $E(XY^2) = \underline{\hspace{1cm}}$ (b) $\underline{\hspace{1cm}}$, and $cov(X,Y) = \underline{\hspace{1cm}}$ (c) $\underline{\hspace{1cm}}$ Given the information that X = x, the conditional probability density function of Y is $f_{Y|X=x}(y) = \underline{\hspace{1cm}}$ (d) $\underline{\hspace{1cm}}$ Now we let Z = X + Y with $f_Z(z)$ the probability density function and $M_Z(t)$ the corresponding moment generating function. Then $f_Z(z) = \underline{\hspace{1cm}}$ (e) $\underline{\hspace{1cm}}$ and $M_Z(t) = \underline{\hspace{1cm}}$ (f) $\underline{\hspace{1cm}}$.
- 2. (20%) Let $\{X_1, X_2, \dots, X_n\}$ be a random sample with the common probability density function $f_X(x;\theta) = (2\pi)^{-1/2}e^{-(x-\theta)^2/2}$, $-\infty < x < \infty$, where θ is an unknown parameter. Given the moment condition $\mathrm{E}[X-\theta]=0$, we let $\tilde{\theta}_n$ be the corresponding method of moments estimator for θ . Then $\tilde{\theta}_n = \underline{\qquad \qquad } (g) \underline{\qquad }$ and $\mathrm{E}(\tilde{\theta}_n) = \underline{\qquad \qquad } (h) \underline{\qquad }$. Let CRLB be the Cramér-Rao lower bound for every unbiased estimator of θ . Then CRLB = $\underline{\qquad \qquad } (i) \underline{\qquad }$. To test the null hypothesis H_0 : $\theta=1$ versus the alternative hypothesis H_1 : $\theta \neq 1$, we may employ the test statistic $T_n = \sqrt{n}(\tilde{\theta}_n 1)$. Let $f_{T_n,H_0}(z)$ be the probability density function of T_n under H_0 . Then $f_{T_n,H_0}(z) = \underline{\qquad \qquad } (j) \underline{\qquad \qquad }$.

Part II:計算問答說明題(50分)

3. (20%) Suppose you estimate the consumption function

$$Y_i = \alpha_1 + \alpha_2 X_i + u_i$$

and the savings function

$$Z_i = \beta_1 + \beta_2 X_i + \nu_i$$

where Y = consumption, Z = savings X = income. It is known the relationship X = Y + Z, i.e., income is equal to consumption plus savings.

- (a) What is the relationship, if any, between α_1 and β_1 ? and also α_2 and β_2 ? Show your calculation. (10%)
- (b) Will the residual sum of squares (RSS) be the same for the two models? Explain. (10%)

國立中正大學 109 學年度碩士班招生考試試題

科目名稱:統計學

本科目共2頁第2頁

系所組別:經濟學系國際經濟學-甲組、乙組

4. (30%) Table 1 summarizes the output of a multiple regression analysis is based on 26 observations.

Table 1: Multiple regression of Y on X_1 , X_2 , X_3 , X_4 and X_5

Predictor	Coefficient	Standard Error	
Constant	1.0	1.5	
X_1	2.0	3.0	
X_2	3.0	0.2	
X_3	0.2	0.05	
X_4	-2.5	1.0	
X_5	3.0	1.5	

Table 2: ANOVA

Source	SS	DF	MS	F statistic ¹
Regression	100	В	Е	G
Error	Α	С	F	
Total	140	D		

Note: 1. Test for the overall significance of the regression

Use the information in Tables 1 and 2 to answer the following questions:

- (a) Complete Table 2, the ANOVA table. In other words, fill in "A" to "G" for the regression analysis. (14%)
- (b) Compute the determination of coefficient \mathbb{R}^2 , and interpret it. (8%)
- (c) Compute the value of adjusted- R^2 , and interpret what the difference between R^2 and adjusted- R^2 is. (8%)