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1. Solve (x—y*)dx+2xydy=0
(a) The equation is exact or not. (b) Find an integrating factor if the equation is not exact. (¢) Find the
solution. (d) Determine the constant if x=1and y=1. (15%)

2. Using the Laplace transformation, solve the initial value problem

&

B o3
dt ¥
dy
Yo%
a7

x(0) =8, (0} =3

(a) What are the characteristic equation and the eigenvalues of the problem?
(b) Find the solution of x(¢) and y(¢).
(c) Explain the solution is stable or not. (15%)

3. (a) Determine constants, a, b and c, so that the function yo(f) = a and y1(f) =b + ¢ ¢ form an
orthonormal set on the interval 0 <t < 1. (10%)
(b) Find the Laplace transform F(s) of the function f(¢) = u(f) + 2¢ + 3£, where u(?) is the unit step
function as below: (10%)
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4. Prove that the inverse of a nonsingular n X n matrix A = [aj] is given by
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where det A is the determinant of A and Ajx is the cofactor of aj in det A. (10%)
5.Prove V- {(uxXv)= v-(Vxu)—u-{(VxXv) (10%)

6. The one-dimensional heat equation is
ou ,0u
—_— = —
ot o’
The two boundary conditions are u(0, f) = 0 and u(L, ) = 0 for all .
The initial condition is u(x, 0) = f{x). Solve the above partial differential equation. (30%)




