國立臺灣科技大學 109 學年度碩士班招生試題

系所組別:光電工程研究所碩士班

科 目:電磁學

(總分為 100 分)

- 1. A uniformly charged rod of length L located along the x axis has a total charge Q as shown in Figure P1. Please find:
 - (a) the electric potential, (7%)
 - (b) the x component of the electric field, (7%)
 - (c) the y component of the electric field, (6%)

at the point P on the y axis a distance d form the origin.

Figure P1.

- 2. Given the spherically-symmetric potential field in free space, $V = V_0 e^{-r/a}$, where V_0 is a constant, a is a positive constant, r is the radial distance measured from the origin, please find:
 - (a) the volume charge density ρ_v at r = a, (7%)
 - (b) the electric field at r = a, (7%)
 - (c) the total charge. (6%)
- 3. A 5 nC charged particle has a velocity $2.0\,\hat{i} + 5.0\,\hat{j} + 3.0\,\hat{k}$ (m/sec) as it enters a magnetic field $\vec{B} = 1500\,\hat{j}$ (T).
 - (a) Calculate the force vector on the charged particle. (5%)
 - (b) What electric field is required so that the velocity of the charged particle remains constant? (5%).

國立臺灣科技大學 109 學年度碩士班招生試題

系所組別:光電工程研究所碩士班

科 目:電磁學

- 4. (a) Please write down the set of Maxwell's equations in time-domain. (5%) (b) What is the criterion that will lead the set of Maxwell's equations into the electric static equations and the magnetic static equations? (5%) (c) Please write down the set of electric static equations. (5%) (d) Please write down the set of magnetic static equations. (5%)
- 5. Consider the plane wave normally incident on various materials shown below. (a) Please write down the expressions for the reflection and transmission coefficients for Case I. (5%) (b) Please write down the expressions for the reflection and transmission coefficients for Case II. (5%) (c) Please write down the expression for the reflection coefficient for Case III. (5%)

(ε_0 and ε_r : dielectric constant; E_i : electric field intensity; H_i : magnetic field intensity; a_{ni} : incident direction)

6. Consider the transmission line problems shown below. (a) Please write down the expression for Z_q that will make the impedance matched for Case IV. (5%) (b) With the derived expression for Z_q , will the impedance be matched for Case V? (5%) (c) With the derived expression for Z_q , please write down the expression for Z_m that will make the impedance matched for Case VI. (5%) (Z_0 and Z_q : characteristic impedance; $l=\lambda/4$: electrical length; Z_m and Z_L : impedance)

