國立臺灣科技大學 109 學年度碩士班招生試題

系所組別:自動化及控制研究所碩士班

科 目:工程數學

(總分為 100 分)

1. (a) Find the solution of the following differential equation

$$y'' - y' + y = 1, y(1) = 4, y'(1) = -2.$$
 (10%)

(b) Find the recurrence relation of the following differential equation and generate the first five terms of a power series solution about 0.

$$y'' - (1 - x)y' + 2y = 1 - x^{2}.$$
 (10%)

2. Use the Laplace transform and convolution to solve the following integral equation $f(t) = -1 + t - 2 \int_0^t f(t - \tau) \sin(\tau) d\tau$. (10%)

- 3. (a) The period of f(x) is 5. Write the complex Fourier series of $f(x) = e^{-x}$ for $0 \le x < 5$. Determine what this series converges to. (10%)
 - (b) Use convolution to find the inverse Fourier transform of the following function

$$\frac{1}{(1+i\omega)(2+i\omega)}. (10\%)$$

國立臺灣科技大學 109 學年度碩士班招生試題

系所組別:自動化及控制研究所碩士班

科 目:工程數學

(總分為 100 分)

4. Let $L: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation defined by $L(\mathbf{x})=(x_2, x_1+x_2, x_1-x_2)^T$. Find the matrix representations of L with respect to the ordered bases $\{\mathbf{u}_1, \mathbf{u}_2\}$ and $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$, where $\mathbf{u}_1=(1, 2)^T$, $\mathbf{u}_2=(3, 1)^T$ and $\mathbf{b}_1=(1, 0, 0)^T$, $\mathbf{b}_2=(1, 1, 0)^T$, $\mathbf{b}_3=(1, 1, 1)^T$. (15%)

5. If $\mathbf{F}(x, y, z) = xz\mathbf{i} + xyz\mathbf{j} - y^2\mathbf{k}$, find the curl and divergence of \mathbf{F} . (15%)

6. Let u be harmonic in the interior of a rectangular region $0 \le x \le a$, $0 \le y \le b$, so that

$$u_{xx}(x, y) + u_{yy}(x, y) = 0$$
 $(0 < x < a, 0 < y < b).$

These values are prescribed on the boundary (Figure P6):

$$u(0, y)=0, u(a, y)=0$$
 $(0 < y < b),$

$$u(x, 0) = f(x), u(x, b) = 0$$
 (0 < x < a). (20%)

Figure P6

