國立高雄大學 109 學年度研究所碩士班招生考試試題

科目：普通化學
考試時間：100分鐘
系所：化學工程及材料工程學系

參考資料
－，元素過期表

二，理想氣體常數，亞佛加厥常數

$R=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{K} \cdot \mathrm{mol} ;$ Avogadro＇s number $=6.02 \times 10^{23}$
＜I＞單一選擇題（共 20 題，佔 60 分，每題 3 分，答錯不倒扣）
1．The element lithium（Li）exists as two stable isotopes，${ }^{6} \mathrm{Li}$（isotopic mass $=6.200 \mathrm{amu}$ ）and ${ }^{7} \mathrm{Li}$ （isotopic mass $=7.200 \mathrm{amu}$ ）．Lithium has an atomic mass of 7.125 amu ．What is the percent abundance of ${ }^{7} \mathrm{Li}$ ？
（A） 7.5%
（B） 22.3%
（C） 90.2%
（D） 92.5%
（E）none of these

2．A chemical engineer dilutes a stock solution of hydrochloric acid (HCl) by adding $25.0 \mathrm{~m}^{3}$ of 7.50 M acid to enough water to make $500 \mathrm{~m}^{3}$ ．What is the mass（in g ）of HCl per liter of the diluted solution？$\left(\mathrm{M}_{\mathrm{w}}(\mathrm{HCl})=36.46 \mathrm{~g} / \mathrm{mol}\right)$
（A） 13.7
（B） 12.1
（C） 0.567
（D） 0.0136
（E）none of these

3．A rigid plastic container holds 45.5 g of methane $\left(\mathrm{CH}_{4}\right)$ at a pressure of 820 torr．What is the pressure（torr）if 3.5 g of methane is removed at constant temperature？
（A） 723
（B） 757
（C） 808
（D） 794
（E）none of these

4．Which of the following statements is true？
（A）The number of neutrons is the same for all neutral atoms of an element．

國立高雄大學 109 學年度研究所碩士班招生考試試題

系所：化學工程及材料工程學系

科目：普通化學

考試時間：100分鐘
（無組別）
本科原始成績：100分

是否使用計算機：是
（B）Alkali metals form ions with a $2+$ charge when they react with nonmetals．
（C）The molecule SO_{2} has two resonance structures．
（D）The total energy of the universe decreases，while the entropy decreases．
（E）none of these
5．In a hydrogenation reaction，ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ and H_{2} from ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ ．If 137 kJ is given off per mole of $\mathrm{C}_{2} \mathrm{H}_{4}$ reacting，how much heat（kJ）is released when 12.6 g of $\mathrm{C}_{2} \mathrm{H}_{6}$ forms？
$\left(\mathrm{Mw}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=30.07 \mathrm{~g} / \mathrm{mol}\right)$
（A） 57.4
（B） 28.7
（C） 14.4
（D） 0
（E）none of these

6．Balance the following redox equation using the smallest integers possible and select the correct coefficient for the HI ．
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7(a q)}+\mathrm{HI}_{(a q)} \rightarrow \mathrm{KI}_{(a q)}+\mathrm{CrI}_{3(a q)}+\mathrm{I}_{2(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
（A） 1
（B） 2
（C） 4
（D） 7
（E）none of these

7．Which of the following statements is incorrect？
（A） NF_{3} is a polar molecule．
（B）The hybridization of the central atom is $s p^{3}$ in ICl_{4}^{-}？
（C）According to the molecular orbital model，the bond order of P_{2} molecule is three．
（D）A material is made from Al, Ga ，and As．The mole fraction of each element is $0.25,0.26$ ， and 0.49 ，respectively．This material would be an p－type semiconductor．
（E）none of these
8．Which of the following electron configurations belongs to an atom that is most likely to be involved in a covalent bond？
（A） $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
（B） $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
（C） $1 s^{2} 2 s^{2} 2 p^{6}$
（D） $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
（E）none of these

9．Select the correct name for the following compound．

（A）3－ethyl－2，3－dimethyl－1－propanol
（B）2，3，4－trimethyl－1－butanol（C）2，3－dimethyl－1－pentanol
（D）3，4－dimethyl－5－pentanol
（E）none of these

10．A certain gas expands in volume from 1.0 L to 2.0 L at constant temperature．Calculate the work done by the gas if it expands against a vacuum．（ $1 \mathrm{~L} \cdot \mathrm{~atm}=101.3 \mathrm{~J}$ ）．
（A）+202.6 J
（B）-101.3 J
（C）+101.3 J
（D） 0 J
（E）none of these

11．Which of the following statements about voltaic（galvanic）and electrolytic cells is correct？
（A）The anode will definitely gain weight in a voltaic cell．

國立高雄大學 109 學年度研究所碩士班招生考試試題

系所：化學工程及材料工程學系

科目：普通化學

考試時間：100分鐘
（無組別）
本科原始成績：100 分

是否使用計算機：是
（B）Oxidation occurs at the cathode of both cells．
（C）The free energy change，ΔG ，is negative for the voltaic cell．
（D）The electrons in the external wire flow from cathode to anode in an electrolytic cell．
（E）none of these．
12．Calculate E° cell and indicate whether the overall reaction shown is spontaneous or nonspontaneous．
$\mathrm{O}_{2(g)}+4 \mathrm{H}^{+}{ }_{(a q)}+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)} \quad E^{o}=1.229 \mathrm{~V}$
$\mathrm{Al}^{3+}{ }_{(a q)}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}_{(\mathrm{s})} \quad E^{o}=-1.662 \mathrm{~V}$
Overall reaction：
$4 \mathrm{Al}_{(s)}+3 \mathrm{O}_{2(g)}+12 \mathrm{H}^{+}{ }_{(a q)} \rightarrow 4 \mathrm{Al}^{3+}{ }_{(a q)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}$
（A）E° cell $=-2.891 \mathrm{~V}$ ，nonspontaneous
（B）$E^{\circ}{ }_{\text {cell }}=-2.891 \mathrm{~V}$ ，spontaneous
（C）$E^{\circ}{ }_{\text {cell }}=2.891 \mathrm{~V}$ ，nonspontaneous
（D）$E^{\circ}{ }_{\text {cell }}=2.891 \mathrm{~V}$ ，spontaneous
（E）none of these

13．Formic acid (HCOOH) has a $K_{\mathrm{a}}=1.8 \times 10^{-4}$ ．What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution that is initially 0.10 M formic acid？
（A） $4.2 \times 10^{-3} \mathrm{M}$
（B） $8.4 \times 10^{-3} \mathrm{M}$
（C） $1.8 \times 10^{-4} \mathrm{M}$
（D） $1.8 \times 10^{-5} \mathrm{M}$
（E）none of these

14．When a weak acid is titrated with a strong base，the pH at the equivalence point？
（A）is less than 7.0
（B）is equal to 7.0
（C）is greater than 7.0
（D）is equal to the $\mathrm{p} K_{\mathrm{a}}$ of the acid
（E）none of these

15．What elements are alloyed to make stainless steel？
（A） Fe and C
（B） Fe and Mn
（C） Fe and Zn
（D） Fe, V and Zn
（E） Fe, Cr and Ni

16． 30.0 mL of a $0.100 \mathrm{~mol} / \mathrm{L}$ solution of a metal ion M^{2+} is mixed with 30.0 mL of a $0.100 \mathrm{~mol} / \mathrm{L}$ solution of a ligand L ．A reaction occurs in which the product is $\mathrm{ML}_{4}{ }^{2+}$ ．Approximately，what is the maximum concentration of ML^{2+} ，in $\mathrm{mol} / \mathrm{L}$ ，which could result from this reaction？
（A） 0.0250
（B） 0.250
（C） 0.180
（D） 0.0125
（E）none of these

17．Which one of the following statements about solid Cu （face－centered cubic unit cell）is incorrect？
（A）The solid has a cubic closest－packed structure．
（B）The number of atoms surrounding each Cu atom is 12 ．
（C）There are two atoms per unit cell．
（D）The length of a face diagonal is four times the Cu radius．
（E）none of these．
18．What is the molecular shape of BrF_{5} as predicted by the VSEPR theory？
（A）Trigonal bipyramidal（B）Square planar
（C） T shaped
（D）Seesaw
（E）none of these

19．The rate expression for a particular reaction is rate $=k[\mathrm{~A}]^{2}[\mathrm{~B}]$ ．If the initial concentration of B is increased from 0.1 M to 0.4 M ，the initial rate will increase by which of the following factors？

國立高雄大學 109 學年度研究所碩士班招生考試試題

科目：普通化學
考試時間： 100 分鐘

系所：化學工程及材料工程學系

（A） 2
（B） 4
（C） 8
（D） 16
（E）none of these

20．For the reaction $\mathrm{FeCl}_{2(a q)}+\mathrm{O}_{2(g)} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(s)}+\mathrm{Cl}_{2(\mathrm{~g})}$（unbalanced），what volume（mL）of a 1．25 M solution of FeCl_{2} is required to react completely with 4.32×10^{22} molecules of O_{2} ？
（A） 76.5
（B） 38.3
（C） 125.2
（D） 57.4
（E）none of these
$<\mathrm{II}>$ 計算題（共 4 題，佔 40 分，每題 10 分）
（1）For the process $\operatorname{Br}_{2(l)} \rightarrow \operatorname{Br}_{2(g)}, \Delta H^{\circ}=31.0 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S^{\circ}=93.0 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}$ ．What is the normal boiling point (K) of liquid Br_{2} ？
（2）Find the solubility of solid $\mathrm{CaF}_{2}\left(K_{s p}=4.0 \times 10^{-11}\right)$ in a 0.025 M NaF solution．
（3）Methane $\left(\mathrm{CH}_{4}\right)$ reacts with chlorine gas $\left(\mathrm{Cl}_{2}\right)$ form chloromethane $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$ ，as the following equation； $\mathrm{CH}_{4(g)}+\mathrm{Cl}_{2(g)} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}_{(g)}+\mathrm{HCl}_{(g)}$

When 20.5 g of methane and 45.0 g of chlorine gas undergo a reaction that has a 65% yield． What mass of the chloromethane $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$ forms？$\left(\mathrm{M}_{\mathrm{w}}\left(\mathrm{CH}_{4}\right)=16.04 \mathrm{~g} / \mathrm{mol}, \mathrm{M}_{\mathrm{w}}\left(\mathrm{Cl}_{2}\right)=70.90\right.$ $\left.\mathrm{g} / \mathrm{mol}, \mathrm{M}_{\mathrm{w}}\left(\mathrm{CH}_{3} \mathrm{Cl}\right)=50.48 \mathrm{~g} / \mathrm{mol}\right)$
（4）Given the following reactions of nitrogen oxides and their standard enthalpy changes，
（1） $\mathrm{NO}_{(g)}+\mathrm{NO}_{2(g)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{3(g)}$
$\Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{rxn}}=-39.8 \mathrm{~kJ}$
（2） $\mathrm{NO}_{(g)}+\mathrm{NO}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{5(g)}$
$\Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{rxn}}=-112.5 \mathrm{~kJ}$
（3） $2 \mathrm{NO}_{2(g)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$
$\Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{rxn}}=-57.2 \mathrm{~kJ}$
（4） $2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{NO}_{2(g)}$
$\Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{rxn}}=-114.2 \mathrm{~kJ}$
（5） $\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~s})} \rightarrow \mathrm{N}_{2} \mathrm{O}_{5(g)}$
$\Delta \mathrm{H}^{\mathrm{o}}{ }_{\text {subl }}=54.1 \mathrm{~kJ}$

Calculate the heat of reaction for
$\mathrm{N}_{2} \mathrm{O}_{3(\mathrm{~g})}+\mathrm{N}_{2} \mathrm{O}_{5(\mathrm{~s})} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{4(\mathrm{~g})}$

