國立政治大學 109 學年度 碩士暨碩士在職專班 招生考試試題

第一頁,共一頁

考 試 科 目 數理統計學 系 所 別 統計學系 考 試 時 間 2 月 7 日 (五) 第二 節

- 1. (a) Let X_1, X_2, \dots, X_n be i.i.d. uniform random variables in the interval (0, 1). Find the density function of the range of (X_1, X_2, \dots, X_n) . (10%)
 - (b) Let X_1, X_2, \cdots, X_n be i.i.d. random variables with an absolutely continuous monotone increasing distribution function F and also let (Y_1, Y_2, \cdots, Y_n) denote the corresponding ordered statistic. Prove that $F(X_1)$ is distributed uniformly in the interval (0,1) and hence show how you can use the result you have obtained in (a) to get the density function of the random variable $F(Y_n) F(Y_1)$. (15%)
- 2. Let X_1, X_2, \dots, X_n be i.i.d. random variables with pdf $f(x) = \frac{1}{6} \theta^4 e^{-\theta x} x^3; x \ge 0, \theta > 0.$
 - (a) Show that $\frac{3}{x_1}$ is an unbiased estimator of θ . (10%)
 - (b) Find the joint distribution of X_1 and $\sum_{i=1}^n X_i$ and hence find the conditional density of X_1 given $\sum_{i=1}^n X_i$. (10%)
 - (c) Show that the UMVUE of θ is $\mathbb{E}\left(\frac{3}{X_1} | \sum_{i=1}^n X_i\right)$ and compute the conditional expectation. (10%)
 - (d) Find the Cramer-Rao lower bound for the variance of an unbiased estimator of θ . Does the variance of UMVUE attain the Cramer-Rao lower bound? (10%)
 - (e) Show that $\frac{X_1}{\sum X_i}$ and $\sum X_i$ are independent random variables and hence show that $E\left(\frac{X_1}{\sum X_i}\right) = \frac{1}{n}$. (10%)
- 3. Suppose that X_1, X_2, \cdots, X_n be i.i.d. Poisson random variables with parameter λ_1 . Independent variables Y_1, Y_2, \cdots, Y_n are i.i.d. Poisson with parameter λ_2 .
 - (a) Show that the conditional distribution of $\sum X_i$, given that $\sum X_i + \sum Y_i = l$, is Binomial $\left(l, \frac{\lambda_1}{\lambda_1 + \lambda_2}\right)$. (10%)
 - (b) How could you use the binomial distribution in (a) to test $H_0: \lambda_1 = \lambda_2$ vs.

 $H: \lambda_1 \neq \lambda_2? \tag{15\%}$

一、作答於試題上者,不予計分。 二、試題請隨卷繳交。

備