第1頁,共4頁

考 試 科 目微積分

國際經營與貿易學系國際 系 所 別 經濟、國際財管、國際企

考試時間

2月7日(五)第四節

Multiple choice questions (5 points each). 選擇題請在答案卡上作答,否則不予計分。

- 1. Let $f(x) = x^4 2x^2 + 1$ for x > -1. Which of the following statements is true?
 - (a) $f'(0) \le 1$ and $f''(0) \le 1$.
 - (b) $f'(0) \le 1$ and f''(0) > 1.
 - (c) f'(0) > 1 and $f''(0) \le 1$.
 - (d) f'(0) > 1 and f''(0) > 1.
 - (e) f'(0) does not exist.
- 2. Let $f(x) = (1+x)\ln(1+x)$ for x > -1. Which of the following statements is true?
 - (a) $f'(0) \le 1$ and $f''(0) \le 1$.
 - (b) $f'(0) \le 1$ and f''(0) > 1.
 - (c) f'(0) > 1 and $f''(0) \le 1$.
 - (d) f'(0) > 1 and f''(0) > 1.
 - (e) f'(0) does not exist.
- 3. Suppose that f is a differentiable function on $(-\infty,\infty)$ such that f(1)=1 and f'(1)=2. Let

$$h(x) = \begin{cases} (f(x) - 1)/(x - 1) & \text{if } x \neq 1; \\ 2 & \text{if } x = 1. \end{cases}$$

Which of the following statements can be concluded based on the given information?

- (a) $h'(1) \leq 1$.
- (b) $1 < h'(1) \le 2$.
 - (c) h'(1) > 2.
 - (d) h'(1) does not exist.
 - (e) None of the above statements can be concluded.
- 4. Suppose that f is a differentiable function on $(-\infty, \infty)$ such that f(1) = 1 and f'(1) = 2. Let $h(x) = f(e^{2x-2})/x$ for x > 0. Which of the following statements can be concluded based on the given information?
 - (a) $h'(1) \leq 1$.
 - (b) $1 < h'(1) \le 2$.
 - (c) h'(1) > 2.
 - (d) h'(1) does not exist.
 - (e) None of the above statements can be concluded.
- 5. Let $f(x) = x^2 + \sin(x)$ and $g(x) = x^2 + \cos(x)$. Which of the following statements is true?
 - (a) $3 < \lim_{x \to \infty} g(x)/f(x) < \infty$.
 - (b) $2 < \lim_{x \to \infty} g(x)/f(x) \le 3$.
 - (c) $1 < \lim_{x \to \infty} g(x)/f(x) \le 2$.
 - (d) $-\infty < \lim_{x\to\infty} g(x)/f(x) \le 1$.
 - (e) $\lim_{x\to\infty} g(x)/f(x)$ does not exist.
 - 一、作答於試題上者,不予計分。選擇題請在答案卡上作答,否則不予計分。二、試題請隨卷繳交。

第2頁,共4頁

考 試 科 目微積分

系所別

國際經營與貿易學系國際 經濟、國際財管、國際企 管與行銷組一般生

考試時間

2月7日(五)第四節

- 6. Let $f(x) = (x-3)^2$ and $g(x) = \ln(x-3)$ for x > 3. Which of the following statements is true?
 - (a) $0 < \lim_{x \to 3^+} f(x)g(x) < \infty$.
 - (b) $-1 < \lim_{x \to 3^+} f(x)g(x) \le 0$.
 - (c) $-2 < \lim_{x \to 3^+} f(x)g(x) \le -1$.
 - (d) $-\infty < \lim_{x \to 3^+} f(x)g(x) \le -2$.
 - (e) None of the above statements holds true.
- 7. Let $f(x) = \sqrt{x(2+x)}$ and g(x) = x for x > 0. Which of the following statements is true?
 - (a) $-\infty < \lim_{x\to\infty} (f(x) g(x)) \le 0$.
 - (b) $0 < \lim_{x \to \infty} (f(x) g(x)) \le 1$.
 - (c) $1 < \lim_{x \to \infty} (f(x) g(x)) \le 2$.
 - (d) $2 < \lim_{x \to \infty} (f(x) g(x)) < \infty$
 - (e) None of the above statements holds true.
- 8. Suppose that $f'(x) = x^2(x+2)e^x$ for $x \in (-\infty, \infty)$. Which of the following statements is true?
 - (a) f is strictly increasing on the interval $(-1, \infty)$.
 - (b) f is strictly decreasing on the interval $(0, \infty)$.
 - (c) f has at least one local minimum on the interval $(-1, \infty)$.
 - (d) f has at least one local maximum on the interval $(-3, \infty)$.
 - (e) None of the above statements holds true.
- 9. Let $f(x) = x \int_0^x e^{t^2} dt$ for $x \in (-\infty, \infty)$. Which of the following statements is true?
 - (a) f'(1) > 0.
 - (b) f has a local maximum at 1.
 - (c) f has a local minimum at 1.
 - (d) $f'(0) \leq -2$.
 - (e) None of the above statements holds true.
- 10. Let $f(x) = x^2 \int_0^x e^{t^2} dt$ for $x \in (-\infty, \infty)$. Which of the following statements is true?
 - (a) $0 < \lim_{x \to 0} f(x)/x < \infty$.
 - (b) $-1 < \lim_{x \to 0} f(x)/x \le 0$.
 - (c) $-2 < \lim_{x\to 0} f(x)/x \le -1$.
 - (d) $-\infty < \lim_{x\to 0} f(x)/x \le -2$.
 - (e) None of the above statements holds true.

二、試題請隨卷繳交。

第3頁,共4頁

國際經營與貿易學系國際 考 試 科 目微積分 系 所 別 經濟、國際財管、國際企 考 試 時 間 2 月 7 日(五) 第四 節 管與行銷組一般生

- 11. Suppose that f is a twice differentiable function on $(-\infty, \infty)$ such that f(1) = 1, f(2) = 2 and f(3) = -2. Which of the following statements can be concluded based on the given information?
 - (a) f'(x) > -3 for some x in the interval (2,3).
 - (b) f''(x) < -2 for some x in the interval (1,3).
 - (c) f'(x) = -3 for some x in the interval (1,3).
 - (d) f'(x) < -3 for some x in the interval (1,2).
 - (e) None of the above statements can be concluded
- 12. Which of the following statements is true?
 - (a) $\int_0^1 x^2 dx \le 0.5$ and $\int_0^\infty e^{-x/2} dx \le 1$.
 - (b) $\int_0^1 x^2 dx \le 0.5$ and $\int_0^\infty e^{-x/2} dx > 1$.
 - (c) $0.5 < \int_0^1 x^2 dx \le 2$ and $\int_0^\infty e^{-x/2} dx \le 1$.
 - (d) $0.5 < \int_0^1 x^2 dx \le 2$ and $\int_0^\infty e^{-x/2} dx > 1$.
 - (e) None of the above statements holds true.
- 13. Which of the following statements is true?
 - (a) $\int_0^{\pi} x \sin(x) dx \le 0.5$ and $\int_0^{\infty} x e^{-x/2} dx \le 1$.
 - (b) $\int_0^{\pi} x \sin(x) dx \le 0.5$ and $\int_0^{\infty} x e^{-x/2} dx > 1$.
 - (c) $0.5 < \int_0^{\pi} x \sin(x) dx \le 2$ and $\int_0^{\infty} x e^{-x/2} dx \le 1$.
 - (d) $0.5 < \int_0^{\pi} x \sin(x) dx \le 2$ and $\int_0^{\infty} \frac{x e^{-x/2} dx}{x} > 1$.
 - (e) None of the above statements holds true.
- 14. Suppose that $\{a_n\}_{n=1}^{\infty}$ is a sequence such that $a_1 = 1$ and $a_{n+1} = \sqrt{0.5a_n + 0.06}$ for $n \ge 1$. Which of the following statements is true?
 - (a) $-\infty < \lim_{n \to \infty} a_n \le 0$
 - (b) $0 < \lim_{n \to \infty} a_n \le 0.5$.
 - (c) $0.5 < \lim_{n \to \infty} a_n \le 1$.
 - (d) $1 < \lim_{n \to \infty} a_n < \infty$.
 - (e) None of the above statements holds true.
- 15. Which of the following statements is true?
 - (a) $\sum_{n=1}^{\infty} (n^2 + 1)/(2n^3 + n + 1) < \infty$ and $\sum_{n=1}^{\infty} (-1)^n/n$ diverges.
 - (b) $\sum_{n=1}^{\infty} (n^2+1)/(2n^3+n+1) < \infty$ and $\sum_{n=1}^{\infty} (-1)^n/n$ converges conditionally.
 - (c) $\sum_{n=1}^{\infty} (n^2 + 1)/(2n^3 + n + 1) = \infty$ and $\sum_{n=1}^{\infty} (-1)^n/n$ diverges.
 - (d) $\sum_{n=1}^{\infty} (n^2+1)/(2n^3+n+1) = \infty$ and $\sum_{n=1}^{\infty} (-1)^n/n$ converges conditionally.
 - (e) $\sum_{n=1}^{\infty} (-1)^n/n$ converges absolutely.

第4頁,共4頁

考 試 科 目微積分

系所別

國際經營與貿易學系國際 經濟、國際財管、國際企 管與行銷組一般生

考試時間

2月7日(五) 第四 節

- 16. Let f(x,y) = 4xy 2x + 2y for $x, y \in (-\infty, \infty)$, and let $D_1 = \{(x,y) : 0 \le x \le 1 \text{ and } 0 \le y \le 1\}$. Which of the following statements is true?
 - (a) $3 < \int_{D_1} f(x, y) d(x, y) < \infty$.
 - (b) $2 < \int_{D_1} f(x, y) d(x, y) \le 3$.
 - (c) $1 < \int_{D_1} f(x, y) d(x, y) \le 2$.
 - (d) $0 < \int_{D_1} f(x, y) d(x, y) \le 1$.
 - (e) None of the above statements holds true.
- 17. Let f(x,y) = 4xy 2x + 2y for $x, y \in (-\infty, \infty)$, and let $D_1 = \{(x,y) : 0 \le x \le 1 \text{ and } 0 \le y \le x\}$. Which of the following statements is true?
 - (a) $3 < \int_{D_1} f(x, y) d(x, y) < \infty$.
 - (b) $2 < \int_{D_1} f(x, y) d(x, y) \le 3$.
 - (c) $1 < \int_{D_1} f(x, y) d(x, y) \le 2$.
 - (d) $0 < \int_{D_1} f(x, y) d(x, y) \le 1$.
 - (e) None of the above statements holds true.
- 18. Let $D = \{(x,y): x > 0, y > 0, 0 < x^2 + y^2 \le 1\}$. Which of the following statements is true?
 - (a) $4 < \int_{D} e^{-x^2 y^2} d(x, y) < \infty$
 - (b) $3 < \int_D e^{-x^2 y^2} d(x, y) \le 4$.
 - (c) $2 < \int_D e^{-x^2 y^2} d(x, y) \le 3$.
 - (d) $1 < \int_D e^{-x^2 y^2} d(x, y) \le 2$.
 - (e) None of the above statements holds true.
- 19. Let $S_n = \sum_{k=1}^n \frac{k}{n^2} \sin\left(\frac{k}{n}\right)$. Which of the following statements is true?
 - (a) $\lim_{n\to\infty} S_n/n$ exists and $\lim_{n\to\infty} S_n/n \ge 1$
 - (b) $\lim_{n\to\infty} S_n$ exists and $\lim_{n\to\infty} S_n \leq \sqrt{2}$.
 - (c) $\lim_{n\to\infty} nS_n$ exists and $\lim_{n\to\infty} nS_n \leq 1$.
 - (d) $\lim_{n\to\infty} n^2 S_n$ exists and $\lim_{n\to\infty} n^2 S_n \leq 1/2$.
 - (e) None of the above statements holds true.
- 20. Let $f(x,y) = x^2y + \sin(2x+y)$ for $x, y \in (-\infty, \infty)$. Which of the following statements is true?
 - (a) $f_x(\pi, 0) \le 1$ and $f_{xx}(\pi, 0) \le 5$.
 - (b) $f_x(\pi, 0 \le 1 \text{ and } f_{xx}(\pi, 0) > 5.$
 - (c) $f_x(\pi, 0) > 1$ and $f_{xx}(\pi, 0) \le 5$.
 - (d) $f_x(\pi, 0) > 1$ and $f_{xx}(\pi, 0) > 5$.
 - (e) None of the above statements holds true.

二、試題請隨卷繳交

備