題號: 289 國立臺灣大學 109 學年度碩士班招生考試試題

科目: 統計理論

 科曰: 統計埋繭
 題號: 289

 節次: 2
 共 2 頁之第 1 頁

1. Let $X_1, ..., X_n$ be a random sample from the Normal distribution with mean θ and variance θ^2 , i.e. $X_i \stackrel{iid}{\sim} N(\theta, \theta^2)$

(a) (10 points) Find the maximum likelihood estimator (MLE) of θ , if it exists.

(b) (5 points) Let
$$T_1 = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$
 and let $T_2 = c_n S = c_n \sqrt{\frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}}$.

Find the constant c_n such that T_2 is an unbiased estimator of θ .

- (c) (5 points) Consider the estimator of θ of the form: $W(\alpha) = \alpha T_1 + (1 \alpha)T_2$, $0 \le \alpha \le 1$. Find the mean square error (MSE) of $W(\alpha)$ in terms of $Var(T_1)$, $Var(T_2)$, and α .
- (d) (5 points) Assume that $Var(T_2) \approx \frac{\theta^2}{2n}$. Find the value of α that reaches the smallest MSE.
- 2. Let $X_1, ..., X_n$ be a random sample from the distribution with pdf

$$f(x|\theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0.$$

- (a) (5 points) Show that the random variable $W = -\log(X)$ is an exponential distribution and find a method of moments estimator of θ .
- (b) (5 points) Find the uniform minimum variance unbiased estimator (UMVUE) of $1/\theta^2$. Be sure to justify your answer.
- (c) (5 points) Find the Cram'er-Rao lower bound for the variance of unbiased estimator of $1/\theta^2$.
- 3. Let $X_1, ..., X_n$ be a random sample from a uniform distribution $U(0, \theta)$.
 - (a) (5 points) Let $Y = \max(X_1, X_2, ..., X_n)$. Find the distribution of Y/θ .
 - (b) (5 points) Find the $(1 \alpha) \times 100\%$ confidence interval for θ .
- 4. Testing the value of the parameter p of a Bernoulli distribution with 5 trials. Let X be the number of successes, then $X \sim B(5, p)$. To test $H_0: p = 0.5$ vs. $H_A: p = 0.2$
 - (a) (2 points) When $X \in \{0, 1\}$, reject H_0 . Find the significant level α .
 - (b) (2 points) Find the probability of type II error.
 - (c) (2 points) Find the power of the test.
 - (d) (2 points) When hypothesis test: $H_0: p = 0.5 \ vs. \ H_A: p < 0.5$ with the same significant level α given in Question(a), find the rejection region.
 - (e) (2 points) When hypothesis test: $H_0: p = 0.5 \ vs. \ H_A: p < 0.5$ with the same significant level α given in Question(a), find the inf $\{P(type\ II\ error\ | H_A)\}$.
- 5. True or False
 - (a) (1 point) In hypothesis test, $H_0 \cap H_A \neq \emptyset$, were \emptyset is empty set.
 - (b) (1 point) In hypothesis test, significance level can be set as any value ranged by (0, 1).
 - (c) (1 point) To test whether the means of K populations are equal, if we have 1st and 2nd populations have significant different means by t-test, the F-test of one-way ANOVA will also reject H_0 .
 - (d) (1 point) In one-way ANOVA, the denominator and the nominator of F test statistic are independent.
 - (e) (1 point) In hypothesis test, "do not reject H₀" is equivalent to "H₀ is true".
- 6. $X_1, X_2, ..., X_n \stackrel{iid}{\sim} Poi(\theta)$, where $P(X = x) = \frac{\theta^x}{x!} e^{-\theta}$, x = 0, 1, 2, ... To test $H_0: \theta = \theta_0$ vs $H_A: \theta > \theta_0$
 - (a) (5 points) Using Neyman-Pearson Lemma to find the UMP test with significant level α .
 - (b) (5 points) Find the generalized likelihood ratio test with significant level α .
- 7. Two populations have equal variance and have means μ_1 and μ_2 , separately. We have random sample $(X_{11}, X_{21}, ..., X_{n_11})$ from population 1 and random sample $(X_{12}, X_{22}, ..., X_{n_22})$ from population 2.

There are two methods to test $H_0: \mu_1 = \mu_2$ vs $H_0: \mu_1 \neq \mu_2$, one is t-test of two unpaired populations, the other is F test of one-way ANOVA.

- (a) (6 points) Separately write down the test statistics of t-test and F-test.
- (b) (2 points) Which distributions do the test statistics of t-test and F-test separately follow?
- (c) (7 arbitrarily points) Show that $T^2 = F$, where T is the test statistics of t-test and F is the test statistic of F-test. (show the deriving detail)

見背面

題號: 289

國立臺灣大學 109 學年度碩士班招生考試試題

科目: 統計理論

題號:289

節次: 2

共 2 頁之第 2 頁

8. If gene frequencies are in equilibrium, the genotypes AA, Aa, and aa occur in a population with frequencies $p_{11} = \theta^2$, $p_{12} + p_{21} = 2\theta(1-\theta)$, and $p_{22} = \theta^2$, according to the Hardy Weinberg law.

For a 2×2 contingency table with observed counts $(n_{11}, n_{12}, n_{21}, n_{22})$:

	Α	a	_
Α	$n_{11}(p_{11})$	$n_{12}(p_{12})$	$n_{1+}(p_{1+})$
a	$n_{21}(p_{21})$	$n_{22}(p_{22})$	
	$n_{+1}(p_{+1})$	$n_{+2}(p_{+2})$	

- (a) (4 points) If $(n_{11}, n_{12}, n_{21}, n_{22}) \sim Multinormal(n_{++}, p_{11}, p_{12}, p_{21}, p_{22})$, find the MLE of θ (in terms of $n_{11}, n_{12}, n_{21}, n_{22}$).
- (b) (3 points) Using Chi-square test to test H_0 : $\theta = \theta_0$ vs. H_A : not H_0 . What is the statistic test?
- (c) (3 points) What are the dimensions of H_0 and H_A , separately? What is the degree of freedom of Chi-square test in Question(b)?

試題隨卷繳回