國立臺灣大學 109 學年度碩士班招生考試試題

科目:總體經濟學

節次: 2

題號: 114 共 4 頁之第 1 頁

1. [General Equilibrium] (50 points)

Consider the following two period general equilibrium model with a representative firm and representative household. The household owns the firm and receives profits from the firm as their income. The firm owns capital.

1. The two period firm's problem:

In the first period t, the firm starts from K_t units of capital to produce $Y_t = A_t K_t^{1/2} = 4K_t^{1/2}$, where A_t is productivity (assumes $A_t = 4$ now). The output and capital are the same goods sold at prices p_t and p_{t+1} in period t and t+1. Y_t can be used as consumption or investment. In the second period, t+1, the firm uses $K_{t+1} = I_t + (1-d)K_t$ and produces $Y_{t+1} = 4K_{t+1}^{1/2}$. I_t is the firm's investment and d is the capital depreciation rate. The nominal interest rate between t and t+1 is i_t . Note that the real interest rate is $(1+r) = \frac{p_t}{p_{t+1}}(1+i_t)$

In the first period after production, the firm sells output to the household and determines investment that it carries to the next period. The profit at t is $\pi_t = p_t Y_t - p_t I_t$. At the next period, the firm produce and sell all its output and capital to the household as consumption. So the profit at t+1 is $\pi_{t+1} = p_{t+1} Y_{t+1} + p_{t+1} (1-d) K_{t+1}$.

- a. By investing, the firm reduces its profit at t but increases K_{t+1} . What is the formula of the gross return (payoff/cost) from capital at t? (5 points)
- b. What is the user cost of capital here? (5 points)
- c. Assume $p_t = p_{t+1} = 10$, $i_t = 1/11$, d = 1/11, $K_t = 100$. What is the desired optimal capital at t+1, K_{t+1} ? (5 points)

2. The household's problem

The household receives firms' profits as the income in each period. The household maximizes his lifetime utility as:

$$\max_{C_t, C_{t+1}} U(x_1, x_2) = \ln(C_t) + 0.8 \ln(C_{t+1})$$

Subject to his lifetime budget constraint,

$$C_t + \frac{C_{t+1}}{1+r} = \frac{\pi_t}{p_t} + \frac{\pi_{t+1}/p_{t+1}}{1+r}.$$

Where r is the real interest rate, and $\frac{\pi_t}{p_t}$ is real income at t.

- a. What is the household's Euler equation ?(5 points)
- b. What is the marginal propensity to consume today? (5 points)

3. General Equilibrium

- a. Write down the market clearing conditions.(5 points)
- b. Now, assume $K_t = 4$, d = 1, $p_t = p_{t+1} = 2$, $A_t = A_{t+1} = 4$, the interest rate is unknown and needs to be determined in equilibrium. Calculate the general equilibrium values of C_t , C_{t+1} , I_t , K_{t+1} , r. List clearly five equations associated with these 5 endogenous variables. (10 points)
- c. Following from b., Suppose now there is a productivity shock so that A_t increases from 4 to, but A_{t+1} remains the same. What is the new equilibrium interest rate? Does it increase or decrease? (10 points)

國立臺灣大學 109 學年度碩士班招生考試試題

科目:總體經濟學

節次: 2

共 4 頁之第 2 頁

2. [Labor and Government Policy] (25 points) Consider an one-period, production economy. There are infinite households and firms in the economy, and the mass of households and firms are both normalized to one.

The household's utility function is

$$u(c,l) = \ln c + \ln l,$$

where c is consumption, and l is leisure. A household can work to obtain wage income, and wage income is equal to the wage rate w times the working hours n. A household's endowment of time is normalized to 1, and thus its time constraint is

$$n + l = 1$$
.

Households also own shares of firms, and the dividend payment they receive from firms is π .

There is a government. The government makes an expenditure g>0. The size of the expenditure is exogenously determined and does not bring any utility to the households. The expenditure is funded by a lump sum tax, τ charged from households. The government's budget constraint is

$$g= au$$
,

and the household's budget constraint is

$$c = wn + \pi - \tau.$$

A firm takes working hours n as inputs, and its production function is

$$F(n) = An,$$

where A is a technology parameter. A firm's profit comes from the revenue of selling output, F(n), minus the wage payment, wn. A firm maximizes its profit, and the profit is transferred to households as dividend payments, π .

- (a) (5 points) Write down the social planner's problem. Solve for the optimal working hours, n, and consumption, c, in the problem.
- (b) (10 points) Now we consider the competitive equilibrium.
 - i. Compare the competitive equilibrium working hours, n, and consumption, c, with those in the social planner's problem.
 - ii. In an economy with a higher government's expenditure, g, will the working hours, n, consumption c, and wage rate, w, be higher, lower, or the same in the competitive equilibrium?

接次頁

國立臺灣大學 109 學年度碩士班招生考試試題

科目:總體經濟學

類號: 114 節次: 2 共 4 頁之第 3 頁

(c) (10 points) Now suppose that the government makes no expenditure, so g=0. However, the government provides a proportional subsidy to households based on their wage income. That is, let the subsidy rate be $t \geq 0$, then if a household's wage income is wn, the government pays twn to the households. Moreover, the subsidy is funded by a lump sum tax charged from households, τ . Thus, let \bar{n} denote the average labor supply among households, and let t denote the government's transfer to a household, then

$$\tau = tw\bar{n}.$$

The households' budget constraint becomes

$$c = (1+t)wn + \pi - \tau.$$

- i. Are the consumption and working hours in the competitive equilibrium higher in an economy with a proportional subsidy (t > 0) or without a proportional subsidy (t = 0)? Or the proportional subsidy t has no impact on the households' decision?
- ii. Is social welfare in the competitive equilibrium higher in an economy with a proportional subsidy (t > 0) or without a proportional subsidy (t = 0)? Or the proportional subsidy t has no impact on the social welfare? Explain your answer.

見背面

國立臺灣大學 109 學年度碩士班招生考試試題

科目:總體經濟學

題號: 114 共 *午* 頁之第 *午* 頁

節次: 2

3. [Economic Growth] (25 points) Consider a Solow growth model with no population growth and no technological progress. Time is discrete: $t = 0, 1, 2, \ldots$ The aggregate production function is

$$Y = F(K, N)$$

Where Y, K, and N are the aggregate output, aggregate capital, and aggregate labor. The house-holds' behavior on consumption and investment is as follows: there is an exogenous saving rate $s \in (0,1)$, and a household uses s proportion of it output to invest and consume the rest, so

$$I_t = sY_t,$$

$$C_t = (1-s)Y_t.$$

Moreover, the accumulation of the aggregate capital follows

$$K_{t+1} = (1 - \delta)K_t + I_t.$$

Where δ is the depreciation rate of capital. Let $k_t = \frac{K_t}{N_t}$ denote the capital per capita.

- (a) Let $F(K, N) = AK^{\alpha}N^{1-\alpha}$, where $0 < \alpha < 1$.
 - i. (5 points) Use the accumulation rule of the aggregate capital to derive the law of motion for capital per capita k_t .
 - ii. (5 points) Solve for the steady state levels of capital per capita and consumption per capita.
- (b) Now let $F(K, N) = AK_t^{\alpha}N^{1-\alpha+\gamma}$, where $0 < \alpha < 1$ and $\gamma > 0$. Suppose that the economy was initially at a steady state, and the steady state capital per capita is equal to $k^* > 0$. An unexpected earthquake occurs at t = 5, and 50 percent of the capital and population are destroyed.
 - i. (5 points) Compare the steady state levels of capital per capita before the earthquake and after the earthquake.
 - ii. (10 points) Identify from Figure 1 the closest dynamic paths of capital per capita and output per capita in the economy.

Figure 1: Dynamic paths

試題隨卷繳回