國立臺灣科技大學 108 學年度碩士班招生試題

系所組別:電子工程系碩士班丙組

科 目:電磁學

(總分為 100 分)

1. (20%) (a) The linear electric quadrupole is an arrangement of three charges as in the following Figure (a). Determine the potential V in terms of q, a, θ , r, and ε_0 at an arbitrary point P at a distance $r^3 >> a^3$ from the quadrupole? (10%)

(b) The two-dimensional quadrupole is an arrangement of the point charge distribution shown in the following Figure (b). Determine the potential V in terms of q, a, θ , r, and ε_0 at an arbitrary point P at a distance $r^3 >> a^3$ from the two-dimensional quadrupole? (10%)

Figure (a): Electrical Quadrupole

Figure (b): Two-dimensional Quadrupole

2. (10%) A square capacitor with an edge of a, shown in the following Figure, consists of two conducting square plates to form a wedge-shaped configuration with a small angel of θ . Determine the capacitance of this capacitor in terms of a, θ , d, and ε_0 ? (10%)

Figure: A Square Capacitor

3. (20%) (a) A finite line charge of length 2L carrying uniform line charge density ρ is coincident with the x-axis, shown in the following Figure (a). Determine the electric field intensity at a point P? (10%)
(b) A direct current I flows in a straight wire of length 2L shown in the following Figure (b). Determine the magnetic flux density B through the vector magnetic potential at a point P located at a distance r from the wire in the bisecting plane? (10%)

Figure (a): A Finite Line Charge

Figure (b): A Current-carrying Straight Wire

國立臺灣科技大學 108 學年度碩士班招生試題

系所組別:電子工程系碩士班丙組

科 目:電磁學

(總分為 100 分)

4. (25%) In a lossless dielectric, for which its intrinsic impedance $\eta=60\pi$, relative permeability $\mu_r=1$, a magnetic field intensity, where the permittivity of free

space
$$\epsilon_0 = \left(\frac{1}{36\pi}\right) \times 10^{-9}$$
 F/m and permeability $\mu_0 = 4\pi \times 10^{-7}$ (H/m)

$$\overline{H} = -0.1\cos(\omega t - z)\,\overline{a}_x + 0.5\sin(\omega t - z)\overline{a}_y \,(A/m)$$

- (a) Find its angular frequency ω and relative permittivity ϵ_r (10%)
- (b) Find its corresponding electric field \overline{E} . (15%)
- 5. (12%) A uniform electromagnetic plane wave propagates in seawater with frequency f=5MHz. The constitutive parameters of seawater are relative permittivity $\epsilon_r=72$, relative permeability $\mu_r=1$, and conductivity $\sigma=4$ (S/m).

Find its attenuation constant, phase constant, intrinsic impedance, phase velocity, wavelength, and skin depth. (2% each)

6. (13%)

A conducting bar slide freely over two conducting rails as shown in the following figure. Calculate the induced voltage in the bar(between P and Q).

- (a) If the bar slides at a velocity $\bar{u}=20\bar{a}_y~m/s~$ and the magnetic flux density $\bar{B}=4\times10^{-3}\bar{a}_z~(Wb/m^2)~~(7\%)$
- (b) If the bar is stationed at y = 8cm and the magnetic flux density

$$\bar{B} = 4 \times 10^{-3} \cos(10^6 t) \,\bar{a}_z \,(Wb/m^2)$$
 (6%)

