國立臺北科技大學 108 學年度碩士班招生考試

系所組別:2120 電機工程系碩士班乙組

第一節 電路學 試題

第一頁 共二頁

注意事項

- 1. 本試題共10題, 每題10分, 共100分。
- 2. 不必抄題,作答時請將試題題號及答案依照順序寫在答案卷上。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。
- 1. If y(t) is equal to x(t) convoluted with h(t), then please find y(t), where x(t) = tu(t-1) + u(t-2) and h(t) = u(t). (10%)
- 2. By using the node-voltage method, please find the current I_x in the circuit of Fig. 1. (10%)

Fig. 1.

3. If $H(s) = \frac{V_o(s)}{V_i(s)} = \frac{1}{s+1}$ and the input voltage $v_i(t)$ is equal to $\sqrt{2}\sin(t+30^\circ) + 5\cos\frac{3}{4}t$ V,

then please find the expression of the output voltage $v_o(t)$ in the steady state? (10%)

4. In Fig. 2, the circuit is fed with a dc current source. Please determine the values of v_C , i_L , the energy stored in the capacitor, and the energy stored in the inductor. (3%, 3%, 2%, 2%)

5. In the circuit of Fig. 3, please find: (a) the value of R_L under the maximum power transfer, and (b) the corresponding maximum power transferred. (5%, 5%)

- 6. The two-wattmeter method produces wattmeter readings P_1 =1560W and P_2 =2100W when connected to a delta-connected load. If the line voltage is 220V, please calculate: (a) the average power per phase, and (b) the reactive power per phase. It is noted that $P_1 = V_L I_L \cos(\theta + 30^\circ)$ and $P_2 = V_L I_L \cos(\theta 30^\circ)$, where V_L , I_L and θ are line voltage value, line current value and power factor angle, respectively. (5%, 5%)
- 7. Fig. 4(a) shows the current i_L flowing one coupling inductor, whereas Fig. 4(b) shows the corresponding current waveform in this coupling inductor. With suitable values labelled, please plot the waveforms relevant to the voltage v_L , the power and the energy, under the condition that L_1 =4H, L_2 =9H and k=0.5. (4%, 3%, 3%)

8. As shown in Fig. 5, please find the Thevenin equivalent resistance R_{TH} by looking from the terminals a and b. (10%)

注意:背面尚有試題

9. Please find the currents i_1 and i_2 shown in Figs. 6(a) and (b), respectively. (5%, 5%)

- 10. (a) If y(t) is equal to h(t) convoluted with x(t), then how to transfer this time-domain expression to the s-domain expression? (2%)
 - (b) What are three constraints required when the phasor is used? (2%)
 - (c) What type of nodes is used in the node-voltage method? (2%)
 - (d) What concept is used in the passive sign convention? (2%)
 - (e) What constraint is needed when we define the transfer function? (2%)