國立臺灣師範大學 108 學年度碩士班招生考試試題

科目:高等微積分

適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

1. (10 分) State and prove the Bolzano-Weierstrass theorem.

2. Determine the convergence or divergence for each of the following series:

(a) (5 \Re) $\sum_{k=2}^{\infty} \arctan \frac{1}{k}$

(b) (5 %) $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^2}$

3. Let A be a nonempty subset of \mathbb{R}^n . For any point $x \in \mathbb{R}^n$, define the distance $\delta_A(x)$ from x to A by

 $\delta_A(x) := \inf \left\{ \left\| x - a \right\| : a \in A \right\},\,$

where ||x-a|| denotes the Euclidean distance between the two points $x, a \in \mathbb{R}^n$.

(a) (8 分) Show that δ_A is a continuous function on \mathbb{R}^n .

(b) (7 %) Suppose further that A is a nonempty, closed subset of \mathbb{R}^n . Show that $\delta_A(x) = 0$ if and only if $x \in A$.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function that satisfies

 $|f(x)-f(y)| \le |x^2-y^2|$ for all $x, y \in \mathbb{R}$.

(a) (5 分) Show that f is a continuous function on \mathbb{R} .

(b) (5 %) Is f(x) differentiable at x = 0? If so, find f'(0).

5. (10 %) Let $f:[a,b] \to \mathbb{R}$ be an integrable function. For each $x \in [a,b]$, define

$$F(x) := \int_x^b f(t) dt.$$

Show that F is uniformly continuous on [a,b].

- 6. (10 \Re) Let $I_n = \int_0^{\pi/2} \sin^n x dx$ for $n \in \mathbb{N}$. Find the ratio $\frac{I_9}{I_7}$.
- 7. (10 分) Let f be a bounded, integrable real function on the interval [0,1], and ε be a positive real number. Show that there is an integer $N \in \mathbb{N}$ such that for each integer $n \ge N$, we have

$$\left| \int_0^1 f(x) x^n \mathrm{d} x \right| < \varepsilon.$$

國立臺灣師範大學 108 學年度碩士班招生考試試題

8. Consider the mapping (u, v, w) = F(x, y, z) from \mathbb{R}^3 to \mathbb{R}^3 defined by

$$\begin{cases} u = x + y + z \\ v = x^{2} + y^{2} + z^{2} \\ w = x^{3} + y^{3} + z^{3} \end{cases}$$

Look at the points p = (0,1,2) and q = F(0,1,2) = (3,5,9) in \mathbb{R}^3 .

- (a) (6 分) Show that there are neighborhoods U of p and V of q such that F has a differentiable inverse mapping G from V to U.
- (b) (9 %) Write (x, y, z) = G(u, v, w) from part (a). Compute the partial derivative $\frac{\partial x}{\partial u}(q)$.
- 9. (10 分) Evaluate the double integral $\iint_R \ln(x+y) dA$, where R is the square region in \mathbb{R}^2 whose vertices are the points (1,2), (2,1), (3,2), and (2,3).