國立臺灣師範大學 108 學年度碩士班招生考試試題

科目:基礎數學

適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

Part I: Calculus

一、填充題(答案本上只寫答案,不需要寫計算過程,請標明題號)

- 1. (10 分) Find the integrals.
 - (a) $\int x \sin(ax) dx$, where $a \neq 0$.
 - (b) $\int x^2 e^x dx$
- 2. (5 分) Find the volume of the solid generated by revolving the region bounded by the graphs of $y = x^2$ and $y = 4x - x^2$ about the x-axis.
- 3. (4分) Find the limits.
 - (a) $\lim_{x \to 5^{-}} \frac{\sqrt{25 x^2}}{x 5}$ (b) $\lim_{x \to 0^{+}} x^{1/x}$
- 4. (5 \Re) Find an equation of the tangent line to the graph of $x^2 + xy + y^2 = 4$ at the point (2,0).
- 5. (6 \Re) Find a power series for $\ln(3x^2+1)$ centered at x=0 and determine the interval of convergence.
- 6. (5 分) Find the tangent line to the curve of intersection of the ellipsoid $x^2 + 2y^2 + 2z^2 = 20$ and the paraboloid $x^2 + y^2 + z = 4$ at the point (0, 1, 3).
- 二、計算題(請在答案本上寫出計算過程和答案,沒有過程不予計分)
- 1. (15 分) Evaluate the integral

$$\int_0^2 \int_x^2 x \sqrt{1 + y^3} \, dy \, dx.$$

國立臺灣師範大學108學年度碩士班招生考試試題

Part II: Linear Algebra

- 1. Let A, B be $n \times n$ matrices over the real numbers.
 - (a) (5 points) Show that $rank(BA) \leq rank(A)$
 - (b) (5 points) Show that $nullity(A) \le nullity(AB)$
- 2. Let V, W be two subspaces of a vector space U over the real numbers. Define $V + W = \{v + w \mid v \in V, w \in W\}$.
 - (a) (5 points) Show that V+W is also a subspace of U.
 - (b) (10 points) Show that $\dim(V+W) = \dim(V) + \dim(W) \dim(V \cap W)$.
- 3. Let $\beta = \{1, 1+x, (1+x)^2, (1+x)^3\}$ be an ordered basis for $P_3(\mathbb{R})$, where $P_3(\mathbb{R})$ is the space of polynomials with real coefficients of degree at most 3. Let T be a linear transformation on

$$P_3(\mathbb{R})$$
 whose matrix representation in β is $\begin{pmatrix} 1 & -1 & 1 & -1 \ -1 & 1 & -1 & 1 \ 2 & -2 & 2 & -2 \ -2 & 2 & -2 & 2 \end{pmatrix}$.

- (a) (5 points) Prove that two similar matrices have the same eigenvalues.
- (b) (10 points) Find a basis for $P_3(\mathbb{R})$ consisting of eigenvectors of T.
- 4. (10 points) Find an invertible matrix Q such that $Q^{-1}AQ$ is the Jordan canonical form of

$$A = \left(\begin{array}{cccc} 2 & -1 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \end{array}\right).$$