國立臺北大學 108 學年度碩士班一般入學考試試題

系(所)組別:金融與合作經營學系

科 目:統計學

第1頁 共2頁□可 ☑不可使用計算機

- A finance PhD program recruits new students by two ways: Choosing the good-grade postgraduates (Inner Promotion, IP), or by opening exam competition (Open Competition, OC). P(IP) = 0.4, P(OC) = 0.6. After the first year qualification test, there are 90% IP and 75% OC students passed. If you randomly select a test-passed student, what is the probability the student recruited from IP? (10%)
- ∴ A mayor wants to know whether there exists seasonal differences about the visitors travelling to his city. He selects
 1360 passengers and surveys their arrival time:

Season	Spring	Summer	Autumn	Winter	
Numbers	334	371	327	328	

Please use Chi-square test under the significant level α =0.01. (13%)

$\chi^2_{ u}\left(lpha ight)$								
			α					
ν	.10	.05	.025	.01	.005			
1	2.706	3.843	5.025	6.637	7.882			
2	4.605	5.992	7.378	9.210	10.597			
3	6.251	7.815	9.348	11.344	12.837			
4	7.779	9.488	11.143	13.277	14.860			
5	9.236	11.070	12.832	15.085	16.748			

- ≥ You participate a game by throwing a coin, which will be HEAD with P(H)=0.6 and TAIL with P(T)=0.4. The throwing results are independent. In the beginning, you own 5 dollars. If you throw a HEAD, you can get 1 dollar; however, if you throw a TAIL, you lose 1 dollar. This game will end when you own 15 dollars or lose all the money. What is the probability you own 15 dollars and lose all the money respectively? (12 %)
- \mathbb{Z} Two independent random variables X and Y. Y follows standard normal distribution, and X is uniform between [0,1]. Z = X + Y. Please derive the detail process that cov(X, Z) = var(X). (15%)
- Ξ · Suppose $X_1, X_2, ..., X_n$ are independent random variables and follow Poisson distribution with mean λ . Please use moment generating function to show that $\overline{X} = \sum X_i / n$ converges in probability to λ . (Hint: The distribution of \overline{X} degenerates to a constant random variable.) (10%)
- \nearrow Suppose $X_1, X_2, ..., X_{10}$ are independent random variables and follow N(0, 1). Let $S = X_1 + X_2 + X_3 + X_4 + X_5$ and $W = X_6^2 + X_7^2 + X_8^2 + X_9^2 + X_{10}^2$. What is the probability $P(S/\sqrt{W} > 4.0324)$? (Rounded to third place.) (10%)
- ← An urn contains six balls, one marked WIN and five marked LOSE. You and another player take turns selecting a ball from the urn, one at a time. The first person to select the WIN ball is the winner. If you draw first, find the probability that you will win
 - (a) When the sampling is done with replacement. (10%)
 - (b) When the sampling is done without replacement. (5%)
- /\ Bowl B₁ contains 2 white chips, bowl B₂ contains 2 red chips, bowl B₃ contains 2 white and 2 red chips, and bowl B₄ contains 3 white chips and 1 red chip. The probabilities of selecting bowl B₁, B₂, B₃, or B₄ are 1/2, 1/4, 1/8, and 1/8, respectively. A bowl is selected using these probabilities, and a chip is then drawn random. Find
 - (a) P(W), the probability of drawing a white chip. (10%)
 - (b) P(B₁|W), the conditional probability that bowl B₁ had been selected, given that a white chip was drawn. (5%)

國立臺北大學 108 學年度碩士班一般入學考試試題

系 (所)組別:金融與合作經營學系

科 目:統計學

第2頁 共2頁

□可 ☑不可使用計算機

附表:

$$P(F \le f) = \int_0^f \frac{\Gamma[(r_1 + r_2)/2](r_1/r_2)^{r_1/2}w^{r_1/2-1}}{\Gamma(r_1/2)\Gamma(r_2/2)(1 + r_1w/r_2)^{(r_1+r_2)/2}} dw$$

	$P(F \leq f)$	Den.		Numerator Degrees of Freedom, r ₁					orremoder an amount	
α		d.f.	1	2	3	4	5	6	7	8
0.05	0.95	1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9
0.025	0.975		647.79	799.50	864.16	899.58	921.85	937.11	948.22	956.66
0.01	0.99		4052	4999.5	5403	5625	5764	5859	5928	5981
0.05	0.95	2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37
0.025	0.975		38.51	39.00	39.17	39.25	39.30	39.33	39.36	39.37
0.01	0.99		98.50	99.00	99.17	99.25	99.30	99.33	99.36	99.37
0.05	0.95	3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85
0.025	0.975		17.44	16.04	15.44	15.10	14.88	14.73	14.62	14.54
0.01	0.99		34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49
0.05	0.95	4	7,71	6.94	6.59	6.39	6.26	6.16	6.09	6.04
0.025	0.975		12.22	10.65	9.98	9.60	9.36	9.20	9.07	8.98
0.01	0.99		21.20	18.00	16.69	15.98	15.52	15.21	14.98	14.80
0.05	0.95	5	6.61	5.79	5.41	5.19	5.05	4.95 ⁻	4.88	4.82
0.025	0.975		10.01	8.43	7.76	7.39	7.15	6.98	6.85	6.76
0.01	0.99		16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29
0.05	0.95	6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15
0.025	0.975		8.81	7.26	6.60	6.23	5.99	5.82	5.70	5.60
0.01	0.99		13.75	10.92	9.78	9.15	8.75	8.47	8.26	8.10