編號: 244

國立成功大學 108 學年度碩士班招生考試試題

系 所:統計學系

考試科目:數學

考試日期:0224, 節次:1

第1頁,共1頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

1. (10%) Evaluate

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-(x-y)^2}}{1 + (x+y)^2} \, dx \, dy.$$

2. (10%) For what values of x does the function

$$f(x) = 3 + |x - 1| + |x + 1|$$

have a unique inverse and find the corresponding inverse function?

3 (10%) Suppose that the function f(x) is such that f'(x) and f''(x) are continuous in a neighborhood of the origin and satisfies f(0) = 0. Show that

$$\lim_{x\to o} \frac{d}{dx} \left[\frac{f(x)}{x} \right] = \frac{1}{2} f''(0).$$

4. (10%) Suppose that the sequence $\{a_n\}_{n=1}^{\infty}$ satisfies the following condition: There is an $r, \ 0 < r < 1$, such that

$$|a_{n+1} - a_n| < br^n$$
, $n = 1, 2, ...$

where b is a positive constant. Show that this sequence converges.

- 5. (10%) Show that $\lim_{n\to\infty}\int_0^{n\pi}\left|\frac{\sin x}{x}\right|\,dx=\infty$, where n is a positive integer.
- 6. (10%) Let A and B be $n \times n$ idempotent matrices. Show that A B is idempotent if and only if AB = BA = B.
- 7. Let A and B be $m \times n$ matrices. Show that
 - a) (5%) rank $(A + B) \le \text{rank}(A) + \text{rank}(B)$.
 - b) (5%) $\operatorname{rank}(A) = \operatorname{rank}(A') = \operatorname{rank}(AA')$.
- 8. (10%) If P is symmetric, then P is idempotent and of rank r if and only if it has r eigenvalues equal to unity and n-r eigenvalues equal to zero.
- 9. (10%) Suppose A and B are nonsingular matrices, with A being $m \times m$ and B being $n \times n$. For any $m \times n$ matrix C and any $n \times m$ matrix D, it follows that if A + CBD is nonsingular then

$$(A + CBD)^{-1} = A^{-1} - A^{-1}C(B^{-1} + DA^{-1}C)^{-1}DA^{-1}.$$

10. Let A be $m \times m$ a nonsingular matrix and I $m \times m$ be an identity matrix such that I + A is nonsingular, and define

$$B = (I + A)^{-1} + (I + A^{-1})^{-1}.$$

- a) (5%) Show that if x is an eigenvector of A corresponding to the eigenvalue λ , then x is an eigenvector of B corresponding to the eigenvalue 1.
- b) (5%) Show that B = I.