國立成功大學 108 學年度碩士班招生考試試題

編號: 49

所: 化學系

考試科目:無機化學

考試日期:0224,節次:3

第1頁,共4頁

※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。

- 一. 選擇題 (每題 4 分)
- 1. Which of the following statements is <u>false</u>?
- a) superoxide has a bond order of one half (B.O.= 0.5) b) peroxide has a bond order of one (B.O.= 1) c) NO⁺ has a bond order of three (B.O.= 3) d) NO⁻ has a bond order of two (B.O.= 2) e) dioxygenyl has a bond order of two and one half (B.O.= 2.5)
- 2. Predict which of the following complexes has the lower energy of CO stretching frequency.
- a) [V(CO)₆]⁻ b) [Mn(CO)₆]⁺
- c) Cr(CO)₆
- d) [Ti(CO)₆]²⁻ e) [Fe(CO)₆]²⁺
- 3. Which of the following statements is true?
- a) Arrhenius concept for acid-base definition works well for nonaqueous solution.
- b) According to Bronsted-Lowry Concept for acid-base, NO₂ is a base because it has a tendency to gain proton.
- c) In solvent system concept, KF is considered as an acid in BrF₃.
- d) In Lewis concept, Ag+ can not act as an acid.
- e) In Frontier orbital concept, the reaction of BF3 and NH3 is the interaction between HOMO of BF3 and LUMO of NH3.
- 4. Predict which way of the following reactions will go to the left, but not to the right.
- a) HI + NaF = HF + NaI
- b) $CoBr_2 + HgF_2 = CoF_2 + HgBr_2$
- c) $CuI_2 + 2CuF = CuF_2 + 2CuI$
- d) $ZnO + 2 LiC_4H_9 = Zn(C_4H_9)_2 + Li_2O$
- e) $TiF_4 + 2TiI_2 = TiI_4 + 2TiF_2$
- 5. Regarding to [Co(ethylenediamine)₃]³⁺, which of the following statements is <u>false</u>?
- a) the complex is optical active
- b) the complex does not contain symmetry element of mirror plane
- c) the point group of this complex is C3
- d) the complex is a diamagnetic species if ethylenediamine is a strong-field ligand
- e) ethylenediamine is a bidentate ligand and forms a five-member chelate ring when it binds to a cobalt ion.

國立成功大學 108 學年度碩士班招生考試試題

系 所:化學系

編號: 49

考試科目:無機化學

第2頁,共4頁

考試日期:0224,節次:3

二、簡答題 (每題3分)

Please answer questions 1-3 related to the following three compounds.

- 1. Determine the valence electrons for compound III.
- 2. How many sets of peaks (do not consider hyperfine interaction) might appear in ¹H NMR at low temperature in compound II
- 3. ¹H NMR at low temperature in compound I shows four sets of peaks. Please write down the ratio of intensity for these four peaks.
- 4. Please indicate the point group of the molecule on the right.

- 5. Please indicate the point group of Fe(C₅H₅)₂ with the staggered form
- 6. Determine the ground term for a high-spin d^7 configuration in O_h symmetry.
- 7.Use the following information to find the potential for the NO \rightarrow N₂O reaction.

 $NO \rightarrow N_2 \varepsilon^0$ (potential) = 1.68 V $N_2O \rightarrow N_2$ ε^0 (potential) = 1.77 V

8. Using the Born-Harbor cycle to calculate the enthalpy of formation of LiF(s).

Use these data in the calculation: F_2 bond energy (dissociation energy) is 158 kJ/mol. The sublimation energy of Li(s) to Li(g) is 161 kJ/mol. The ionization energy of Li(g) to Li⁺(g) is 520 kJ/mol. The electron affinity of $F_{(g)}$ to $F_{(g)}$ is 328 kJ/mol. The lattice enthalpy of LiF(s) is -950 kJ/mol

- 9. What is the number of atoms in each unit cell of the body-centered cubic structure?
- 10. What are Lattice points of the body-centered cubic structure?
- 11. Please predict the base strength in the gas phase of a) NHMe₂, b) NH₂Me, c) NMe₃ and d) NH₃ in an increasing order.

: 49 國立成功大學 108 學年度碩士班招生考試試題

編號: 49

所: 化學系

考試科目:無機化學

第3頁,共4頁

考試日期:0224,節次:3

Questions 12-14 are related to constructing molecular orbitals of [Co(Cl)₅]²⁻ with a trigonal bipyramidal geometry.

D3h	Е	2C ₃	3C ₂	$\sigma_{\rm h}$	$2S_3$	$3\sigma_{\rm v}$		
A1'	1	1	1	1	1	1		x^2+y^2, z^2
A2'	1	1	-1	1	1	-1	Rz	
E'	2	-1	0	2	-1	0	(x,y)	(x^2-y^2,xy)
A1"	1	$ {1}$	1	-1	-1	-1		
A2"	1	1	-1	-1	-1	1	Z	
E"	2	-1	0	-2	1	0	(Rx,Ry)	(xz,yz)

12. The p_x and p_z sets of ligand orbitals are used in π bonding with metal ion. The derived characters of the reducible representations of p_x and p_z sets of ligand orbitals for π bonding are in the table. Please write down the value (a, b, c, d, e, f)

	Е	$2C_3$	$3C_2$	σ_{h}	2S ₃	3σ _v	
$\Gamma_{x,z}$	a	Ъ	С	d	е	\mathbf{f}	

- 13. What are component irreducible representations for the reducible representations above?
- 14. What are the d orbitals which might have π interactions with ligands?
- 15 The $4f_{z(x^2-y^2)}$ orbital has the angular function $y = (constant)z(x^2-y^2)/r^3$. Please write down the three equations to define the angular nodal surfaces.
- 16. Please write down the equation for producing hydrogen gas in industry
- 17. Please use Lewis electron-dot methods to draw three resonance structures for thiocyanate, SCN-.
- 18. What is the energy level diagrams of d-orbitals for transitional metal complexes with trigonal bipyramidal geometry? Please also label orbitals.
- 19. If a transition metal complex has a d^6 electrons with a trigonal bipyramidal geometry, please predict the electronic spin-state of this complex.
- 20. Continuing the question above, what is the calculated spin-only magnetic moment for this complex? $\mu_s = g[S(S+1)]^{1/2}$, g is the gyromagnetic ratio 2.00023

國立成功大學 108 學年度碩士班招生考試試題

編號: 49

所:化學系

考試科目:無機化學

第4頁,共4頁

考試日期:0224,節次:3

三. 詳答題

- 1. The isoelectronic ions VO_4^{3-} , CrO_4^{2-} , MnO_4^{-} all have intense charge-transfer transition bands. The wavelengths of these transitions increase in this series, with MnO_4^{-} having its charge-transfer absorption at the longest wavelength. Please explain this trend. (5%)
- 2.Please <u>sketch</u> the σ , π , and δ bonding interactions between two metal d orbitals in $[\text{Re}_2\text{Cl}_8]^{2-}$ on the right figure.(5%)

- 3.Please predict IR bands for CO stretching modes in cis-ML₂(CO)₂ and trans-ML₂(CO)₂. L is a monodentate ligand. Please show the process of your answer including the following three points.
- a) the point groups of cis-ML2(CO)2 and trans-ML2(CO)2 (2%)
- b) the symmetry irreducible representations for CO stretching modes in these two complexes. (4%)
- c) the number of IR bands for CO stretching modes in these two complexes. (4%)

Of CO sucteming modes in areas the										
C _{2v}	E	C ₂ (z)	$\sigma_{v}(\mathbf{z}) \left \sigma_{v}(\mathbf{x}\mathbf{z}) \right \sigma_{v}(\mathbf{y}\mathbf{z}) \left \begin{array}{c} \text{linear,} \\ \text{rotations} \end{array} \right $		linear, rotations	quadratic				
A ₁	1	1	1	1	Z	x^2 , y^2 , z^2				
A2	1	1	-1	-1	Rz	xy				
B ₁	1	-1	1	-1	x, R _y	xz				
B ₂	1	-1	-1	1	y, R _x	yz				
	C _{2v} A ₁ A ₂ B ₁	C _{2v} E A ₁ 1 A ₂ 1 B ₁ 1	$\begin{array}{c cccc} C_{2v} & E & C_{2}(z) \\ \hline A_{1} & 1 & 1 \\ A_{2} & 1 & 1 \\ \hline B_{1} & 1 & -1 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

$\mathbf{D}_{2\mathrm{h}}$	E	C ₂ (z)	C ₂ (y)	C ₂ (x)	i	σ (xy)	σ (xz)	σ (yz)	linear, rotations	quadratic
A_{g}	1	1	1	1	1	1	1	1		x^2, y^2, z^2
B_{1g}	1	1	-1	-1	1	1	-1	-1	Rz	xy
$ ho_{2g}$	1	-1	1	-1	1	-1	1	-1	R _y	xz
B _{3g}	1	-1	-1	1	1	-1	-1	1	R _x	yz
Au	1	1	-1	1	-1	-1	-1	-1		
B _{1u}	1	1	-1	-1	-1	-1	1	1	Z	
B _{2u}	1	-1	1	-1	-1	1	-1	1	у	
B _{3u}	1	-1	-1	1	-1	1	1	-1	х	