國立成功大學 108 學年度碩士班招生考試試題 編號: 49 所: 化學系 考試科目:無機化學 考試日期:0224,節次:3 #### 第1頁,共4頁 ※ 考生請注意:本試題不可使用計算機。 請於答案卷(卡)作答,於本試題紙上作答者,不予計分。 - 一. 選擇題 (每題 4 分) - 1. Which of the following statements is <u>false</u>? - a) superoxide has a bond order of one half (B.O.= 0.5) b) peroxide has a bond order of one (B.O.= 1) c) NO⁺ has a bond order of three (B.O.= 3) d) NO⁻ has a bond order of two (B.O.= 2) e) dioxygenyl has a bond order of two and one half (B.O.= 2.5) - 2. Predict which of the following complexes has the lower energy of CO stretching frequency. - a) [V(CO)₆]⁻ b) [Mn(CO)₆]⁺ - c) Cr(CO)₆ - d) [Ti(CO)₆]²⁻ e) [Fe(CO)₆]²⁺ - 3. Which of the following statements is true? - a) Arrhenius concept for acid-base definition works well for nonaqueous solution. - b) According to Bronsted-Lowry Concept for acid-base, NO₂ is a base because it has a tendency to gain proton. - c) In solvent system concept, KF is considered as an acid in BrF₃. - d) In Lewis concept, Ag+ can not act as an acid. - e) In Frontier orbital concept, the reaction of BF3 and NH3 is the interaction between HOMO of BF3 and LUMO of NH3. - 4. Predict which way of the following reactions will go to the left, but not to the right. - a) HI + NaF = HF + NaI - b) $CoBr_2 + HgF_2 = CoF_2 + HgBr_2$ - c) $CuI_2 + 2CuF = CuF_2 + 2CuI$ - d) $ZnO + 2 LiC_4H_9 = Zn(C_4H_9)_2 + Li_2O$ - e) $TiF_4 + 2TiI_2 = TiI_4 + 2TiF_2$ - 5. Regarding to [Co(ethylenediamine)₃]³⁺, which of the following statements is <u>false</u>? - a) the complex is optical active - b) the complex does not contain symmetry element of mirror plane - c) the point group of this complex is C3 - d) the complex is a diamagnetic species if ethylenediamine is a strong-field ligand - e) ethylenediamine is a bidentate ligand and forms a five-member chelate ring when it binds to a cobalt ion. ### 國立成功大學 108 學年度碩士班招生考試試題 系 所:化學系 編號: 49 考試科目:無機化學 第2頁,共4頁 考試日期:0224,節次:3 #### 二、簡答題 (每題3分) Please answer questions 1-3 related to the following three compounds. - 1. Determine the valence electrons for compound III. - 2. How many sets of peaks (do not consider hyperfine interaction) might appear in ¹H NMR at low temperature in compound II - 3. ¹H NMR at low temperature in compound I shows four sets of peaks. Please write down the ratio of intensity for these four peaks. - 4. Please indicate the point group of the molecule on the right. - 5. Please indicate the point group of Fe(C₅H₅)₂ with the staggered form - 6. Determine the ground term for a high-spin d^7 configuration in O_h symmetry. - 7.Use the following information to find the potential for the NO \rightarrow N₂O reaction. $NO \rightarrow N_2 \varepsilon^0$ (potential) = 1.68 V $N_2O \rightarrow N_2$ ε^0 (potential) = 1.77 V 8. Using the Born-Harbor cycle to calculate the enthalpy of formation of LiF(s). Use these data in the calculation: F_2 bond energy (dissociation energy) is 158 kJ/mol. The sublimation energy of Li(s) to Li(g) is 161 kJ/mol. The ionization energy of Li(g) to Li⁺(g) is 520 kJ/mol. The electron affinity of $F_{(g)}$ to $F_{(g)}$ is 328 kJ/mol. The lattice enthalpy of LiF(s) is -950 kJ/mol - 9. What is the number of atoms in each unit cell of the body-centered cubic structure? - 10. What are Lattice points of the body-centered cubic structure? - 11. Please predict the base strength in the gas phase of a) NHMe₂, b) NH₂Me, c) NMe₃ and d) NH₃ in an increasing order. # : 49 國立成功大學 108 學年度碩士班招生考試試題 編號: 49 所: 化學系 考試科目:無機化學 第3頁,共4頁 考試日期:0224,節次:3 Questions 12-14 are related to constructing molecular orbitals of [Co(Cl)₅]²⁻ with a trigonal bipyramidal geometry. | D3h | Е | 2C ₃ | 3C ₂ | $\sigma_{\rm h}$ | $2S_3$ | $3\sigma_{\rm v}$ | | | |-----|---|-----------------|-----------------|------------------|--------|-------------------|---------|----------------| | A1' | 1 | 1 | 1 | 1 | 1 | 1 | | x^2+y^2, z^2 | | A2' | 1 | 1 | -1 | 1 | 1 | -1 | Rz | | | E' | 2 | -1 | 0 | 2 | -1 | 0 | (x,y) | (x^2-y^2,xy) | | A1" | 1 | $ {1}$ | 1 | -1 | -1 | -1 | | | | A2" | 1 | 1 | -1 | -1 | -1 | 1 | Z | | | E" | 2 | -1 | 0 | -2 | 1 | 0 | (Rx,Ry) | (xz,yz) | 12. The p_x and p_z sets of ligand orbitals are used in π bonding with metal ion. The derived characters of the reducible representations of p_x and p_z sets of ligand orbitals for π bonding are in the table. Please write down the value (a, b, c, d, e, f) | | Е | $2C_3$ | $3C_2$ | σ_{h} | 2S ₃ | 3σ _v | | |----------------|---|--------|--------|--------------|-----------------|-----------------|--| | $\Gamma_{x,z}$ | a | Ъ | С | d | е | \mathbf{f} | | - 13. What are component irreducible representations for the reducible representations above? - 14. What are the d orbitals which might have π interactions with ligands? - 15 The $4f_{z(x^2-y^2)}$ orbital has the angular function $y = (constant)z(x^2-y^2)/r^3$. Please write down the three equations to define the angular nodal surfaces. - 16. Please write down the equation for producing hydrogen gas in industry - 17. Please use Lewis electron-dot methods to draw three resonance structures for thiocyanate, SCN-. - 18. What is the energy level diagrams of d-orbitals for transitional metal complexes with trigonal bipyramidal geometry? Please also label orbitals. - 19. If a transition metal complex has a d^6 electrons with a trigonal bipyramidal geometry, please predict the electronic spin-state of this complex. - 20. Continuing the question above, what is the calculated spin-only magnetic moment for this complex? $\mu_s = g[S(S+1)]^{1/2}$, g is the gyromagnetic ratio 2.00023 # 國立成功大學 108 學年度碩士班招生考試試題 編號: 49 所:化學系 考試科目:無機化學 第4頁,共4頁 考試日期:0224,節次:3 #### 三. 詳答題 - 1. The isoelectronic ions VO_4^{3-} , CrO_4^{2-} , MnO_4^{-} all have intense charge-transfer transition bands. The wavelengths of these transitions increase in this series, with MnO_4^{-} having its charge-transfer absorption at the longest wavelength. Please explain this trend. (5%) - 2.Please <u>sketch</u> the σ , π , and δ bonding interactions between two metal d orbitals in $[\text{Re}_2\text{Cl}_8]^{2-}$ on the right figure.(5%) - 3.Please predict IR bands for CO stretching modes in cis-ML₂(CO)₂ and trans-ML₂(CO)₂. L is a monodentate ligand. Please show the process of your answer including the following three points. - a) the point groups of cis-ML2(CO)2 and trans-ML2(CO)2 (2%) - b) the symmetry irreducible representations for CO stretching modes in these two complexes. (4%) - c) the number of IR bands for CO stretching modes in these two complexes. (4%) | Of CO sucteming modes in areas the | | | | | | | | | | | |------------------------------------|--|---|--|---|---|---|--|--|--|--| | C _{2v} | E | C ₂ (z) | $\sigma_{v}(\mathbf{z}) \left \sigma_{v}(\mathbf{x}\mathbf{z}) \right \sigma_{v}(\mathbf{y}\mathbf{z}) \left \begin{array}{c} \text{linear,} \\ \text{rotations} \end{array} \right $ | | linear,
rotations | quadratic | | | | | | A ₁ | 1 | 1 | 1 | 1 | Z | x^2 , y^2 , z^2 | | | | | | A2 | 1 | 1 | -1 | -1 | Rz | xy | | | | | | B ₁ | 1 | -1 | 1 | -1 | x, R _y | xz | | | | | | B ₂ | 1 | -1 | -1 | 1 | y, R _x | yz | | | | | | | C _{2v} A ₁ A ₂ B ₁ | C _{2v} E A ₁ 1 A ₂ 1 B ₁ 1 | $\begin{array}{c cccc} C_{2v} & E & C_{2}(z) \\ \hline A_{1} & 1 & 1 \\ A_{2} & 1 & 1 \\ \hline B_{1} & 1 & -1 \\ \hline \end{array}$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | | $\mathbf{D}_{2\mathrm{h}}$ | E | C ₂ (z) | C ₂ (y) | C ₂ (x) | i | σ (xy) | σ (xz) | σ (yz) | linear,
rotations | quadratic | |----------------------------|---|--------------------|--------------------|--------------------|----|--------|--------|--------|----------------------|-----------------| | A_{g} | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | x^2, y^2, z^2 | | B_{1g} | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | Rz | xy | | $ ho_{2g}$ | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | R _y | xz | | B _{3g} | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | R _x | yz | | Au | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | | | | B _{1u} | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | Z | | | B _{2u} | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | у | | | B _{3u} | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | х | |