注意:考試開始鈴響前,不得翻閱試題,並不得書寫、畫記、作答。

國立清華大學 108 學年度碩士班考試入學試題

系所班組別:計量財務金融學系 乙組

考試科目(代碼): 微積分(5104)

-作答注意事項-

- 1. 請核對答案卷(卡)上之准考證號、科目名稱是否正確。
- 作答中如有發現試題印刷不清,得舉手請監試人員處理,但不得要求解釋題意。
- 考生限在答案卷上標記「➡由此開始作答」區內作答,且不可書寫姓名、 准考證號或與作答無關之其他文字或符號。
- 4. 答案卷用盡不得要求加頁。
- 5. 答案卷可用任何書寫工具作答,惟為方便閱卷辨識,請儘量使用藍色或 黑色書寫;答案卡限用 2B 鉛筆畫記;如畫記不清(含未依範例畫記) 致光學閱讀機無法辨識答案者,其後果一律由考生自行負責。
- 6. 其他應考規則、違規處理及扣分方式,請自行詳閱准考證明上「國立清華大學試場規則及違規處理辦法」,無法因本試題封面作答注意事項中未列明而稱未知悉。

國立清華大學 108 學年度碩士班考試入學試題

系所班組別:計量財務金融學系碩士班 乙組

考試科目 (代碼): 微積分 (5104)

共_2_百,第_1__百 *諸在【答案卷】作答

Total Points: 100. Calculation and Proofs. Show your derivation.

1. (10 pts) Find the maximum and minimum values of $f(x,y) = 4x^2 + 10y^2$ on the disk $x^2 + y^2 \le 4$.

2. (24 pts) Given $x \ge 0$, k a constant, and $y^+ = max\{0, y\}$, prove each inequality (three inequalities)

$$x-k \le (x-k)^+ \le \int_{-\infty}^{\infty} (xe^{\frac{-1}{2}+z}-k)^+ \frac{1}{\sqrt{2\pi}}e^{\frac{-z^2}{2}} dz \le x.$$

3.(24 pts) On a domain [0,T] with the partition $\Pi = \{t_0 = 0, t_1, \dots, t_n = T > 0\}$ and its length $\|\Pi\| = \max_{i=0,\dots,n-1} (t_{j+1} - t_j)$, two definitions of variation are given below

(1) The total variation of f, denoted by $TV_T(f)$ is

$$TV_{T}(f) = \lim_{\|T\| \to 0} \sum_{j=0}^{n-1} |f(t_{j+1}) - f(t_{j})|.$$

(2) The quadratic variation of f, denoted by $\langle f, f \rangle_T$ is

$$\langle f, f \rangle_T = \lim_{\|I\| \to 0} \sum_{j=0}^{n-1} \left[f\left(t_{j+1}\right) - f\left(t_j\right) \right]^2.$$

Now, suppose $f \in C^1([0,T])$ meaning that its first-order derivative is continuous on [0,T]. Answer the following questions:

- (a) State the mean value theorem.
- (b) Apply this theorem to prove $TV_T(f) = \int_0^T |f'(t)| dt$.
- (c) Prove $\langle f, f \rangle_T = 0$.

國立清華大學 108 學年度碩士班考試入學試題

考試科目 (代碼): 微積分 (5104)

4.(24 pts) Given two sets of probabilities $P = \{p_i, i = 1, ..., n\}$ and $Q = \{q_i, i = 1, ..., n\}$, the relative entropy between P and Q is

$$\mathcal{E}(P|Q) = \sum_{i=1}^{n} p_i \, \ln \frac{p_i}{q_i}$$

Remark: $0 \log \frac{0}{q} = 0$, $p \log \frac{p}{0} = \infty$ for any nonnegative p and q.

- (a) Prove that $\mathcal{E}(P|P) = 0$
- (b) Prove that $\mathcal{E}(P|Q) \geq 0$
- (c) Prove that $\mathcal{E}(P|Q)=0$ if and only if P=Q $(p_i=q_i,i=1,...,n)$
- (d) Provide a counterexample to demonstrate that $\mathcal{E}(Q|P) \neq \mathcal{E}(P|Q)$

5.(18 pts) Assume that the real-valued function f(x), is countinuous and bounded, and $0 \le t \le T$, $-\infty < x < \infty$.

(a) Check that u(t,x) = f(x - kt) is a solution to

$$\frac{\partial u}{\partial t}(t,x) + k \frac{\partial u}{\partial x}(t,x) = 0,$$

where k is any constant.

(b) Check that $u(t,x) = \int_{-\infty}^{\infty} f(x) \frac{1}{\sqrt{2\pi(T-t)}} e^{\frac{-x^2}{2(T-t)}} dx$ is a solution to

$$\begin{cases} \frac{\partial u}{\partial t}(t,x) + \frac{1}{2}\frac{\partial^2 u}{\partial x^2}(t,x) = 0\\ u(t,x) = f(x). \end{cases}$$