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Total Points: 100. Calculation and Proofs. Show your derivation.

1. (10 pts) Find the maximum and minimum values of f(x,y) = 4x? + 10y? onthe

disk x? +y? < 4.

2. (24 pts ) Given x = 0, k aconstant, and y* = max{0, y}, prove each
inequality (three inequalities)

- 72
x—k<(x-k*t< I_Z(xe%z - k)* J-—;_;eT dz <x.
3.(24 pts) On a domain [0,77] with the partition 11 = {t, = 0,t,,,t, =T > 0} and

its length ||IT|| = maxi=o,...,n_1(tj+1 - tj), two definitions of variation are given
below

(1) The total variation of f, denoted by TV (f) is
V() = lim T3 () - F(27)]

lirli~o

(2) The quadratic variation of f, denoted by {f,f)r is
(f. 0 = Jim T () = F ()]

Now, suppose f € C1({0, T]) meaning that its first-order derivative is continuous
on {0,77. Answer the following questions:

(a) State the mean value theorem.
(b) Apply this theorem to prove TVy(f) = f: If(®)dt.

(¢) Prove(f,f)r = 0.
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4.(24 pts) Given two sets of probabilities P = {p;,i=1,...,n} and Q =
{q;,i = 1, ...,n}, the relative entropy between P and Q is

Remark: 0 logg- =0, p log-:)Z = co for any nonnegative p and q.

(a) Prove that E(PJP) =0
(b) Prove that E(P|Q) =0
(c) Prove that E(P]Q) =0 ifandonlyif P=Q (p; = qii = 1,...,n)
(d) Provide a counterexample to demonstrate that £(Q|P) # E(P|Q)

5.(18 pts) Assume that the real-valued function f(x), is countinuous and bounded,
and 0<t<T, —ow<x<oo
(a) Check that u(t,x) = f(x — kt) is a solution to

du du

E;(t,x) + ka(t,?c) =0,

where k is any constant.
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(b) Check that u(t,x) = [__ f(x) = ez-0 dx is a solution to
ou 10%u
ot (t'x) +§ax2 (trx) =0

u(t, x) = f(x).



