注意：考試開始鈴響前，不得翻閱試題，並不得書寫，畫記，作答。

國立清華大學108學年度碩士班考試入學試題

系所班組別：統計學研究所考試科目（代碼）：機率論（0202）

—作答注意事項－

1．請核對答案卷（卡）上之准考證號，科目名稱是否正確。
2．作答中如有發現試題印刷不清，得舉手請監試人員處理，但不得要求解釋題意。

3．考生限在答案卷上標記「「由此開始作答」區内作答，且不可書寫姓名，准考證號或與作答無關之其他文字或符號。

4．答案卷用盡不得要求加頁。
5．答案卷可用任何書寫工具作答，惟為方便関卷辨識，請儘量使用藍色或黑色書寫；答案卡限用 2 B 鉛筆畫記；如畫記不清（含未依範例畫記）致光學閱讀機無法辨識答案者，其後果一律由考生自行負責。

6．其他應考規則，違規處理及扣分方式，請自行詳閲准考證明上「國立清華大學試場規則及違規處理辦法」，無法因本試題封面作答注意事項中未列明而稱未知悉。

國立清華大學108學年度碩士班考試入學試題

系所班組別：統計學研究所碩士班（0502）
考試科目（代碼）：機率論（0202）
共 2 頁，第＿1 頁＊綪在【答案卷】作答

- 8 題填充題，共 20 個空格。每格以編號（1）至（20）。
- 每格答對得 5 分，答錯不和分。
- 答案卷中必須自行清楚標明每格之編號：（1），（2），$\cdots,(20)$ 並將答案寫在第
- 頁。
- 每格只需最後答案或式子，不須導證過程。

1．A medical test．A diagnostic test has a probability 0.90 of giving a positive result when applied to a person having a certain infectious disease．On the other hand，a probability 0.10 of giving a false positive when applied to a person not having that infectious disease． 10% of the population are known to have that infectious disease．
（A）Determine the probability that the test result will be positive． \qquad （1）
（B）Determine the probability that，given a positive result，the person has a disease．
\qquad （2） \qquad
（C）Determine the probability that the person will be misclassified． \qquad （3） \qquad

2．Let (X, Y) be uniformly distributed on $\left\{(\mathrm{x}, \mathrm{y}): x^{2}+y^{2} \leq 1\right\}$ ．
（A）Find the conditional density function of Y given $X=x$ ． \qquad （4）
（B）Let $\mathrm{Z}=\sqrt{X^{2}+Y^{2}}$ ．Find the CDF for Z ． \qquad （5） \qquad
3.
（A）Let $\mathrm{X} \sim \operatorname{Poisson}(\lambda)$ and $\mathrm{Y} \sim \operatorname{Poisson}(\mu)$ ．Assume that X and Y are independent． Find the distribution of X given $\mathrm{X}+\mathrm{Y}$ ． \qquad （6） \qquad
（B）Let $X_{1}, \cdots, X_{n} \sim \operatorname{Exp}(\beta)$ ，i．e．，$f_{X_{1}}(x)=\beta e^{-\beta x}, x \geq 0$ ．Find the pdf of $\mathrm{Z}=$ $\max \left\{X_{1}, \cdots, X_{n}\right\}$ ． \qquad （7） \qquad
（C）Let X and Y be independent random variables from an exponential distribution with mean $1 / 10$ ．Find $P(X \geq 5 Y)$ ． \qquad （8）

國立清華大學 108 學年度碩士班考試入學試題

系所班組別：統計學研究所碩士班（0502）

考試科目（代碼）：機率論（0202）

$$
\text { 共 } 2 \text { _頁, 第_2 頁 *锖在【答案卷】作答 }
$$

4．Suppose that T is a continuous random variable as the lifetime of an object．Define the hazard function of $T, h_{T}(\mathrm{t})$ ，as $h_{T}(\mathrm{t})=\lim _{\Delta \rightarrow 0} \frac{P(t \leq T \leq t+\Delta \mid T \geq t)}{\Delta}$ ．Based on this definition， considering the following pdfs or cdfs：
（A）If $T \sim \operatorname{Exp}(\beta)$ ，i．e．，$f_{T}(\mathrm{t})=\beta e^{-\beta t}, t \geq 0$ ，then $h_{T}(\mathrm{t})$ can be calculated as －（9） \qquad ．
（B）If $T \sim$ Weibull (γ, β) ，i．e．，$f_{T}(\mathrm{t})=\frac{\gamma}{\beta} t^{\gamma-1} e^{-t^{\gamma} / \beta}, t \geq 0$ ，then $h_{T}(\mathrm{t})$ can be calculated as \qquad （10） \qquad ．

5．Let X_{1}, \cdots, X_{n} are iid from $N(\theta, 1)$ and let $\theta \sim N(0,1)$ ．
（A）Calculate $E\left(\theta \mid X_{1}, \cdots, X_{n}\right)$ ．＿（11） \qquad
（B）Calculate $\operatorname{Var}\left(\theta \mid X_{1}, \cdots, X_{n}\right)$ ． \qquad
6.
（A）Suppose X_{1}, \cdots, X_{n} are iid with common expected value μ and variance σ^{2} ．Let $Y_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ ．Calculate the limiting distribution of $\sqrt{n}\left(Y_{n}^{2}-\mu^{2}\right)$ ． \qquad （13）
（B）Suppose X_{1}, \cdots, X_{n} are iid with common density function $\mathrm{f}(\mathrm{x})=2 x, 0<x<1$ ． Let $Y_{n}=n^{-1} \sum_{i=1}^{n} X_{i}^{2}$ ．Find $\mathrm{a}=$ \qquad （14） \qquad and $b=$ \qquad such that the limiting distribution of $\sqrt{n}\left(Y_{n}-\mathrm{a}\right) / \mathrm{b}$ is $\mathrm{N}(0,1)$ ．
（C）Suppose X_{1}, \cdots, X_{n} are iid Bernoulli random variables with $\mathrm{E}\left(X_{i}\right)=p, \mathrm{i}=$ $1, \cdots, \mathrm{n}$ ．Let $Y_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ ．For $p \neq 1 / 2$ ，Calculate the limiting distribution of $\sqrt{n}\left\{Y_{n}\left(1-Y_{n}\right)\right\}$ ． \qquad （16） \qquad

7．I have two coins：one fair $(P($ head $)=0.5)$ and one biased $(P($ head $)=0.25)$ ．
（A）I pick one at random and toss it 100 times．Let X denote the number of heads in 100 tosses．Calculate $\mathrm{E}(\mathrm{X})$ ． \qquad （17） \qquad
（B）I pick one at random and toss it until I see a head．Let Y denote the number of tosses to get a head．Calculate $\mathrm{E}(\mathrm{Y})$ ． \qquad （18） \qquad

8．Let X and Y be two normal random variables with mean 0 and variance 1 ．The correlation coe cient between X and Y is ρ ．
（A）Find a constant c so that X and $\mathrm{Y}-\mathrm{cX}$ are independent． \qquad
（B）Calculate $\mathrm{E}\left(X^{2} Y^{2}\right)$ ． \qquad （20） \qquad

