注意：考試開始鈴響前，不得翻閔試題，並不得書寫，畫記，作答。

國立清華大學108學年度碩士班考試入學試題

系所班組別：統計學研究所

考試科目（代碼）：基礎數學（微積分，線性代數）（0201）

—作答注意事項—

1．請核對答案卷（卡）上之准考證號，科目名稱是否正確。
2．作答中如有發現試題印刷不清，得塞手請監試人員處理，但不得要求解釋題意。

3．考生限在答案卷上標記「「由此開始作答」區内作答，且不可書寫姓名，准考證號或與作答無關之其他文字或符號。

4．答案卷用盡不得要求加頁。
5．答案卷可用任何書寫工具作答，惟為方便関卷辨識，請儘量使用藍色或黑色書寫；答案卡限用 2 B 鉛筆畫記；如畫記不清（含未依範例畫記）致光學関讀機無法辨識答案者，其後果一律由考生自行負責。

6．其他應考規則，違規處理及扣分方式，請自行詳関准考證明上「國立清華大學試場規則及違規處理辨法」，無法因本試題封面作答注意事項中未列明而稱未知悉。

國立清華大學 108 學年度碩士班考試入學試題

系所班組別：統計學研究所（0502）
考試科目（代碼）：基礎數學（微積分，線性代數）（0201）

共 3 頁，第＿1頁＊請在【答案卷•卡】作答

一，多選題（本大題共 48 分，每題 6 分）
請於答案卡作答，答案全對才給分。
1．Suppose $a_{n}>0, b_{n}>0, \sum a_{n}<\infty$ and $\sum b_{n}<\infty$ ．Which of the following series also converge？
（A）$\sum a_{n}^{2}$
（B）$\sum a_{n} a_{n+1}$
（C）$\sum \sqrt{a_{n}}$
（D）$\sum a_{n} b_{n}$
（E）$\sum \sin \left(a_{n}\right)$
2．Which of the following statements are true？
（A）$\sum_{n=1}^{\infty} \frac{n^{2}}{2^{n}}<\infty$
（B）$\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln n}<\infty$
（C）$\sum_{n=1}^{\infty}\left(1-\frac{1}{n}\right)^{2 n}<\infty$
（D）If $\sum a_{n}$ converges，$\sum\left|a_{n}\right|$ also converges．
（E）If $\sum a_{n} 6^{n}$ diverges，$\sum a_{n}(-8)^{n}$ also diverges．
3．Which of the following statements are true？
（A） $\operatorname{tr}(A B)=\operatorname{tr}(A) \operatorname{tr}(B)$
（B） $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\prime} A\right)$
（C） $\operatorname{det}(c A)=c \operatorname{det}(A)$
（D）If $A^{2}=A$ ，then the eigenvalues of A have to be 1 ，where A is an $n \times n$ matrix over real numbers．
（E）If the columns of A are linearly independent，then the rows of A are also linearly independent， where A is an $n \times n$ matrix．

4．Which is the value of the integral $\iint_{\Omega} x^{2} d x d y$ ，where $\Omega=\{(x, y):|x|+|y| \leq 1\}$ ？
（A） $1 / 2$
（B） $1 / 3$
（C） $1 / 4$
（D） $1 / 5$
（E） $1 / 6$

國立清華大學 108 學年度碩士班考試入學試題

系所班組別：統計學研究所（0502）
考試科目（代碼）：基礎數學（微積分，線性代數）（0201）
共_3 頁, 第_2 頁 *請在【答案卷, 卡】作答

5．Let $f(x, y)=x^{3}-8 x^{2}+3 y^{2}-6 y$ ．Which of the following statements are true？
（A）f has global maximum．
（B）f has saddle point．
（C）f has local minimum．
（D）f has local maximum．
（E）None of the above．
6．Assume that $f(x)=\int_{2}^{x} \frac{e^{t}-1}{t} d t$ ．Then $f^{(6)}(0)=$ ？
（A） $1 / 6$
（B） 1
（C）$\frac{1}{6!}$
（D）$\frac{1}{6 \cdot(6!)}$
（E）None of the above．
7．Let $f(x)=\sin (x)+1 / 2$ for $x \in[-\pi / 2, \pi / 2]$ ，what is the value of $\left(f^{-1}\right)^{\prime}(0)$ ？
（A） 1
（B） $1 / 2$
（C）$-1 / 2$
（D） $2 / \sqrt{3}$
（E）$-2 / \sqrt{3}$
8．Let $f(x)=(\ln x) / x$ ．Which of the following statements are true？
（A）f is increasing on $(0,1)$
（B）f is concave on $(0, \infty)$
（C）f has inflection point．
（D）f has the maximum at e
（E）f has the maximum value e

國立清華大學108學年度碩士班考試入學試題

系所班組別：統計學研究所（0502）
考試科目（代碼）：基礎數學（微積分，線性代數）（0201）

共＿3頁，第—3頁＊請在【答案卷，卡】作答

二，填充題（本大題共 28 分，每題 7 分）

請在答案卷第一頁 上作答，此大題只需寫答案，不需要計算過程。
9． $\lim _{n \rightarrow \infty}\left(1-\sin \frac{2}{n}\right)^{n}=$ \qquad
10．Let $F(x)=\int_{g(x)}^{h(x)} f(t) d t$ ，where $f(\cdot), g(\cdot), h(\cdot)$ are continuous and differentiable．Then $F^{\prime}(x)=$ \qquad －

11．Let $a_{1}=0, a_{2}=1$ and $a_{n+1}=\frac{2}{3} a_{n}+\frac{1}{3} a_{n-1}$ for $n \geq 2$ ．Find $\lim _{n \rightarrow \infty} a_{n}=$ \qquad ．

12．Among all the ellipses $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ that pass through the point $(5,-3)$ ，which one has the smallest area？
$(a, b)=$ \qquad

三，問答題（本大題共 24 分）

請在答案卷第二頁上作答，此大題需寫出完整的演算過程。
13．Consider the $m \times m$ matrix $A=\alpha I_{m}+\beta 1_{m} 1_{m}^{\prime}$ ，where α and β are scalars， 1_{m} is a $m \times 1$ vector with elements all equal to 1 and I_{m} is the $m \times m$ identity matrix．
（A）Find the eigenvalues of A ．
（B）Determine the eigenspaces and the associated eigenprojections of A ．
（C）For which values of (α, β) will A be nonsingular？

