國立臺灣大學108學年度碩士班招生考試試題

科目:統計學(A)

節次: 4

題號: 114

題號:114 共 2 頁之第 1 頁

• 本試題共7大題,合計100分。

- 請依題號依序作答。
- 請詳述理由或計算推導過程, 否則不予計分。
- 1. (10%) Let $\varepsilon_t \sim^{i.i.d.}$ (0,1), and $e_t = \varepsilon_t \varepsilon_{t-1}$.
 - (a) (5%) Is e_t a martingale difference sequence with respect to $\mathcal{F}_t = \{\varepsilon_t\}$?
 - (b) (5%) Is e_t an i.i.d. sequence?
- 2. (20%) Let

$$\{X_i\}_{i=1}^n \sim^{i.i.d.} \text{Bernoulli}(p)$$

The odds ratio is defined as $\theta = \frac{p}{1-p}$.

- (a) (5%) Find the maximum likelihood estimator of θ .
- (b) (5%) Construct a 95% confidence interval of θ .
- (c) (5%) Suppose that you have obtained $\{x_1, x_2, \dots, x_n\}$ as the realizations of a random sample. Describe how to construct a 95% percentile bootstrap confidence interval of θ .
- (d) (5%) Suppose that the realizations of the random sample have 80 successes and 20 failures. Use the above data to test $H_0: \theta = 3$ vs. $H_1: \theta > 3$ with significance level $\alpha = 0.01$.
- 3. (5%) Let $(X, Y, Z) \sim^{i.i.d.} N(0, 1)$. Find the distribution of

$$W = \frac{X + YZ}{\sqrt{1 + Z^2}}$$

4. (15%) Consider the linear model

$$Y = \alpha + \beta X + \varepsilon$$

where ε is an error term such that $Cov(X, \varepsilon) \neq 0$.

- (a) (5%) Is $\alpha + \beta X$ the best predictor of Y given X?
- (b) (5%) Let Z be a random variable satisfying $E(\varepsilon|Z) = 0$. What is the best predictor of Y given Z?
- (c) (5%) Now suppose that X and Z are bivariate normal random variables:

$$\begin{pmatrix} X \\ Z \end{pmatrix} \stackrel{d}{=} N \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \right)$$

where ρ is a known constant. Use this information to determine α and β . What happens if $\rho = 0$?

[Some useful N(0,1) probabilities]

$$P(N(0,1) \le 2.33) = 0.99, P(N(0,1) \le 1.96) = 0.975$$

$$P(N(0,1) \le 1.64) = 0.95, P(N(0,1) \le 1.28) = 0.90$$

國立臺灣大學108學年度碩士班招生考試試題

科目:統計學(A)

題號: 114

節次:

題號:114

5. (20%) True, false, or uncertain, and Why? Evaluate the following statements with brief explanations.

- (a) (5%) Under the principle of presumption of innocence, letting a guilty person go free is a Type III error.
- (b) (5%) According to the Gauss-Markov theorem, the OLS estimate is unbiased when the error terms are heteroscedastic.
- (c) (5%) Suppose that variable Z is a determinant of the dependent variable Y, omitted variable bias will definitely occur if Z is not included in the regression of Y on X.
- (d) (5%) The probit model is always better than the linear probability model when the dependent variable is binary even if the error term is heteroscedastic.
- 6. (10%) The parameter β is defined in the model

$$Y_i = \beta X_i^* + u_i$$

where u_i is independent of X_i^* , $E(u_i) = 0$, $E(u_i^2) = \sigma^2$, the observables are (Y_i, X_i) where

$$X_i = X_i^* v_i$$

and $v_i > 0$ is random measurement error. Assume that v_i is independent of X_i^* and u_i . Also assume that X_i and X_i^* are non-negative and real-valued. Consider the least-squares estimator $\hat{\beta}$ for β .

- (a) (5%) Find the probability limit of $\hat{\beta}$, expressed in terms of β and moments of (X_i, v_i, u_i) .
- (b) (5%) Find a condition under which $\hat{\beta}$ is consistent for β ?
- 7. (20%) Consider the following regression model

$$Y_i = \beta_0 + \beta_1 X_i + u_i$$

and let Z be a *binary* instrumental variable (IV) for X.

- (a) (4%) What are the conditions for Z to be a valid instrument for X?
- (b) (5%) What is the IV estimator of β_1 ?
- (c) (5%) Is the IV estimator of β_1 consistent? Explain.
- (d) (6%) Show that the IV estimator of β_1 can be simplified as a function of \bar{Y}_0 , \bar{X}_0 , \bar{Y}_1 and \bar{X}_1 , where \bar{Y}_0 and \bar{X}_0 are the simple averages of Y_i and X_i over the part of the sample with $Z_i = 0$, and \bar{Y}_i and \bar{X}_i are the simple averages of Y_i and X_i over the part of the sample with $Z_i = 1$.

試題隨卷繳回