元智大學 107 學年度 轉學考 招生試題卷

系(所)別:電機工程學系學 組別:電機工程學系乙組3年級

用紙第/頁共2頁

●不可使用電子計算機

- 選擇題(單選題) (7%)
- 1. What is the doped atom to make N-type silicon semiconductor? 10% (A) Ge (B) B (C) As (D) Si
- 2. Consider the circuit shown in the following figure, where $I_{DI} = 0.5 mA$, $R_I = 1 K \Omega$. Calculate the current I_x with constant voltage model of the diode ($V_{DON} = 0.7 V$). IDI is (A) 1mA (B) 1.2mA (C) 1.4mA (D) 1.6mA. 10%

3. A common-base amplifier shown below is biased at a collector current I_C of 1.3 mA. The $R_C = 500\Omega$, R_E = 30 Ω , V_T = 26 mV and β = 100. $I_C = I_s \exp(V_{BE}/V_T)$

The voltage gain of this amplifier is (A) 10 (B) 16.6 (C) 26 (D) 52. 10%

- 4. In problem 3, the input impedance of this amplifier is (A) 30Ω (B) 50Ω (C) 260Ω (D) ∞ Ω 10%
- 5. A source follower amplifier is shown below. The transconductance of the NMOS(M_1 and M_2) is g_m . The impedance between drain and source is r_o . The voltage gain of this amplifier is

(A)
$$g_m$$
 (B) $g_m r_o$ (C) $1/g_m$ (D) 1 10%

$$V_{\text{in}} \circ \longrightarrow M_1$$
 $V_{\text{b}} \circ \longrightarrow M_2$

元智大學 107 學年度 轉學考

系(所)別:電機工程學系學 組別:電機工程學系乙組3年級

用紙第2頁共2頁

●不可使用電子計算機

- 6. In problem 5, the output impedance of this amplifier is (A) $\infty \Omega$ (B) g_m (C) r_o (D) $1/g_m$. 10%
- 7. The OP-based amplifier is shown below. The V_{out} of this amplifier is $(A) - (R_1/R_2) (V_{in} + V_{os}) (B) - (R_1/R_2) (V_{in} - V_{os}) (C) (1 + R_1/R_2) (V_{in} + V_{os}) (D) - 1 + R_1/R_2) (V_{in} - V_{os}) (D) - 1 + R_1/R_2 (D) (D) - 1 + R_1/$ V_{os}) 10%

- 二 問答題 (30%)
- 8. Assuming a constant-voltage mode ($D_{on} = 0.7 V$) for the diodes, plot the output voltage waveform of a full-wave rectifier. Explain how to work of this circuit. 10%

9. An integrated circuit employs the source follower and the common-source stage with current mirrors shown below. What are the copy current I_1 and I_2 . 10%

10. There are three negative feedback systems and their Bode-plot figures of open loop gain are shown as follows. Which are the stable systems? Explain the reasons. 10%

