元智大學 107 學年度 轉學考 招生試題卷

(所)別:電機工程學系學 組別:電機工程學系乙組2年級 科目:普通物理

用紙第1頁共1頁

●不可使用電子計算機

1. (25%)

An estimated force—time curve for a baseball struck by a bat as shown in the figure.

- (a) (13%) Find the magnitude of the impulse delivered to the ball.
- (b) (12%) Find the magnitude of the average force exerted on the baseball.

2. (25%)

Consider a *conducting* sphere of radius *R* which has some charges inside the sphere initially, and finally the conducting sphere reaches *electrostatic equilibrium*.

- (a) (10%) Find the electric field at R/2 in electrostatic equilibrium.

 [You must explain how you get your answer, otherwise no score will be given!]
- (b) (5%) Find the direction of the electric field at the surface of the conducting sphere in electrostatic equilibrium.
- (c) (5%) Explain why the whole surface of the conducting sphere is equal-electric-potential. [You must use $dV = -\vec{E} \cdot d\vec{S}$ to explain it.]
- (d) (5%) Assume the electric potential is 5 volt at R/2, find the electric potential at R/4. [You must calculate or explain your answer.]

3. (25%)

Given that the direction and magnitude of I_3 are both known, as shown in the figure and $I_3=3A$. However, the directions of I_1 and I_2 are only assumed.

- (a) (15%) Find the values of I_1 , I_2 , and $\mathcal E$. [Hint: The signs of I_1 , I_2 could be positive or negative.]
- (b) (10%) Replot the figure with the correction directions of I_1 and I_2 according to their signs.

4. (25%)

Given Maxwell's equations as follow:

(1)
$$\oint \vec{B} \cdot d\vec{A} = 0$$
 (2) $\oint \vec{B} \cdot d\vec{s} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\psi_E}{dt}$ (2) $\oint \vec{E} \cdot d\vec{A} = \frac{q}{\epsilon_0}$ (4)

- (a) (5%) Explain the physical meaning of Equation (1) (i.e., why the right hand side of Equation (1) is zero).
- (b) (5%) If the conduction current is 2 A in the circuit containing a charging capacitor, find the displacement current.
- (c) (5%) Continued from (b), find the value of $\frac{d\Phi_E}{dt}$.
- (d) (5%) Based on which equations exactly did Maxwell predict the existence of electromagnetic waves?
- (e) (5%) In Hertz's experiment, an LC circuit (L = 20 H, C= 50 μF) was used to generate the electromagnetic wave. Find the frequency f (In Hz) of the electromagnetic wave. [Hint: f = ω/2π.]