元智大學 107 學年度 轉學考 招生試題卷

系(所)別: 化學工程與材料 組別: 化學工程與材料科學學系3年科目:物理化學

用紙第【頁共】

●不可使用電子計算機

1. A Carnot cycle, which is named after the French engineer Sadi Carnot, consists of four reversible stages as shown below. Please describe what is happening in these 4 steps (25 pt)

2. Calculate the lattice enthalpy (ΔH) of KCl(s) using a Born–Haber cycle and the following data (25 pt)

Process	$\Delta H^{\bullet}/(kJ \text{ mol}^{-1})$
Sublimation of K(s)	+89
Ionization of K(g)	+418
Dissociation of Cl ₂ (g)	+244
Electron attachment to Cl(g)	-349
Formation of KCI(e)	137

- 3. The Nernst equation applied for a glass pH electrode at 25 °C can be expressed as $E = E^0 0.059 \log[H^+]$, which is exactly the basis how a pH meter reads pH. What the E would be at (a) pH 0; (b) pH 3; (c) pH 5; (d) pH 7; (e) pH 14 (25 pt)
- 4. The ionization energy of hydrogen atom is 13.6 eV. What is the second ionization energy of He atom? Hint: quantized ionization energy of hydrogen-like atom can be expressed as $E_n = -\frac{Z^2 u e^4}{32\pi^2 \epsilon_0^2 \hbar^2 n^2}$ where Z is the atomic number and n is the quantum number. In the case of the ionization energy of hydrogen, $\frac{\mu e^4}{32\pi^2 \epsilon_0^2 \hbar^2}$ can be approximated to 13.6 eV. (25 pt)