臺北市立大學

107 學年度第一學期學士班二，三年級轉學生招生考試試題

系 別：數學系（三年級）
科 目：高等微積分
考試時間：90分鐘【8：30－10：00】

不得使用計算機或任何儀具。

總 分：100 分
※ 注意：不必抄題，作答時請將試題題號及答案依照順序寫在答卷上；限用藍色或黑色筆作答，使用其他顔色或鉛筆作答者，所考科目以零分計算。（於本試題紙上作答者，不予計分。）

計算證明題（每題 10 分，共 100 分）

1．Suppose that a_{n} is a sequence in R ，and $a_{n}>0$ for all $n \in \mathbb{N}$ ．
Prove that $\limsup \sqrt[n]{a_{n}} \leq \lim \sup \frac{a_{n+1}}{a_{n}}$.
2．Let a_{n} be a Cauchy sequence in R．Prove that a_{n} is a convergent sequence in \mathbb{R} ．

3．Let $[a, b]$ be a closed，bounded interval and $f_{n} \rightarrow f$ uniformly on $[a, b]$ as $n \rightarrow \infty$ ．Suppose that each f_{n} is integrable on $[a, b]$ ． Prove that f is integrable on $[a, b]$ and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b}\left(\lim _{n \rightarrow \infty} f_{n}(x)\right) d x
$$

4．Suppose that E is a compact set in R^{n} ．Show that E is closed and bounded in R^{n} ．

5．Suppose that E is a nonempty compact subset of \mathbb{R}^{n} ， and $f: E \rightarrow \mathbb{R}^{n}$ is a continuous function．Show that f is uniformly continuous on E ．

6．Suppose that $f: N \rightarrow \mathbb{R}$ ．If $\lim _{n \rightarrow \infty} f(n+1)-f(n)=L$ ．Prove that $\lim _{n \rightarrow \infty} \frac{f(n)}{n}=L$ exists．

7．Suppose that f is differentiable at every point in a closed，bounded interval $[a, b]$ ．Prove that if $\frac{d}{d x} f$ is increasing on (a, b) ，then $\frac{d}{d x} f$ is continuous on (a, b) ．

8．Let f be defined on $[0,1]$ as

$$
f(x)=\left\{\begin{array}{c}
0, \text { if } x \notin Q \\
\frac{1}{n}, \text { if } x=\frac{m}{n} \text { with } \operatorname{gcd}(m, n)=1
\end{array}\right.
$$

where $m, n \in \mathbb{N}$ ．Prove that f is continuous only at every irrational point in $[0,1]$

9．Find the maximum and minimum values of $f(x, y, z)=x y z$ subject to $x=y$ and $x^{2}+z^{2}=1$

10．Compute the second－order Taylor formula for $f(x, y)=e^{x} \sin y$ around $(0, \pi / 6)$ ．

