167BE0/

# 國立臺北科技大學107學年度碩士班招生考試

系所組別:3601

## 化學工程與生物科技系生化與生醫工程碩士班

第一節 生物化學 試題 (選考)

第一頁 共三頁

### 注意事項:

- 1. 本試題共【27】題,選擇題 25 題每題【3】分,簡答題 26 題【15】分,簡答題 27 題【10】分,共 100 分。
- 2. 請標明大題、子題編號作答,不必抄題。
- 3. 全部答案均須在答案卷之答案欄內作答,否則不予計分。

#### 選擇題(共25題,每題3分)

- 1 Two amino acids of the standard 20 contain sulfur atoms. They are:
  - A) cysteine and serine.
- B) cysteine and threonine
- C) methionine and cysteine
- D) methionine and serine
- E) threonine and serine
- All of the following are considered "weak" interactions in proteins, except:
  - A) hydrogen bonds

B) hydrophobic interactions

C) ionic bonds

- D) peptide bonds
- E) van der Waals forces
- In an  $\alpha$  helix, the R groups on the amino acid residues:
  - A) alternate between the outside and the inside of the helix.
  - B) are found on the outside of the helix spiral
  - C) cause only right-handed helices to form.
  - D) generate the hydrogen bonds that form the helix.
  - E) stack within the interior of the helix.
- 4 During muscle contraction, hydrolysis of ATP results in a change in the:
  - A) conformation of actin
  - B) conformation of myosin.
  - C) structure of the myofibrils
  - D) structure of the sarcoplasmic reticulum
  - E) structure of the Z disk

- 5. Which of the following is *not* correct concerning 2,3-bisphosphoglycerate (BPG)?
  - A) It binds at a distance from the heme groups of hemoglobin
  - B) It binds with lower affinity to fetal hemoglobin than to adult hemoglobin.
  - C) It increases the affinity of hemoglobin for oxygen
  - D) It is an allosteric modulator
  - E) It is normally found associated with the hemoglobin extracted from red blood cells
- 6 Enzymes are potent catalysts because they:
  - A) are consumed in the reactions they catalyze
  - B) are very specific and can prevent the conversion of products back to substrates
  - C) drive reactions to completion while other catalysts drive reactions to equilibrium
  - D) increase the equilibrium constants for the reactions they catalyze
  - E) lower the activation energy for the reactions they catalyze

| 7 | In a double-stranded nucleic ac | id, cytosine typically base-pairs with |
|---|---------------------------------|----------------------------------------|
|   | A) adenosine                    | B) guanine                             |

C) inosine

B) guanine

C) inosine
E) uracil

D) thymine

- Which of the following deoxyoligonucleotides will hybridize with a DNA containing the sequence (5')AGACTGGTC(3')?
  - A) (5')CTCATTGAG(3')
- B) (5)GACCAGTCT(3)
- C) (5')GAGTCAACT(3')
- D) (5')TCTGACCAG(3')
- E) (5')TCTGGATCT(3')
- 9 The PCR reaction mixture does *not* include:
  - A) all four deoxynucleoside triphosphates
  - B) DNA containing the sequence to be amplified
  - C) DNA ligase.
  - D) heat-stable DNA polymerase.
  - E) oligonucleotide primer(s).
- 10 An example of a glycerophospholipid that is involved in cell signaling is:
  - A) arachidonic acid.

- B) ceramide.
- C) phosphatidylinositol.
- D) testosterone.
- E) vitamin A (retinol).

注意:背面尚有試題

#### 第二頁 共三頁

|    | B)                                    | a chelating agent that removes divalent cations.                                               |  |  |  |  |  |  |  |  |  |
|----|---------------------------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|    | C)                                    | a solution containing detergent.                                                               |  |  |  |  |  |  |  |  |  |
|    | D) a solution of high ionic strength. |                                                                                                |  |  |  |  |  |  |  |  |  |
|    | E)                                    | hot water.                                                                                     |  |  |  |  |  |  |  |  |  |
|    |                                       |                                                                                                |  |  |  |  |  |  |  |  |  |
| 12 | Mo                                    | Movement of water across membranes is facilitated by proteins called:                          |  |  |  |  |  |  |  |  |  |
|    | A)                                    | annexins B) aquaporins                                                                         |  |  |  |  |  |  |  |  |  |
|    | C)                                    | hydropermeases D) selectins                                                                    |  |  |  |  |  |  |  |  |  |
|    | E)                                    | transportins                                                                                   |  |  |  |  |  |  |  |  |  |
|    |                                       |                                                                                                |  |  |  |  |  |  |  |  |  |
| 13 |                                       | Hormone-activated phospholipase C can convert phosphatidylinositol                             |  |  |  |  |  |  |  |  |  |
|    |                                       | 5-bisphosphate to:                                                                             |  |  |  |  |  |  |  |  |  |
|    | (5.)                                  | diacylglycerol + inositol triphosphate.                                                        |  |  |  |  |  |  |  |  |  |
|    | B)                                    |                                                                                                |  |  |  |  |  |  |  |  |  |
|    | 1-0000000                             | cerol + inositol + phosphate.                                                                  |  |  |  |  |  |  |  |  |  |
|    | D)                                    |                                                                                                |  |  |  |  |  |  |  |  |  |
|    | E)                                    | phosphatidyl glycerol + inositol + phosphate.                                                  |  |  |  |  |  |  |  |  |  |
| 14 | Th                                    | The anaerobic conversion of 1 mol of glucose to 2 mol of lactate by fermentation is            |  |  |  |  |  |  |  |  |  |
|    |                                       | accompanied by a net gain of:                                                                  |  |  |  |  |  |  |  |  |  |
|    | A)                                    | 1 mol of ATP. B) 1 mol of NADH                                                                 |  |  |  |  |  |  |  |  |  |
|    | C)                                    | 2 mol of ATP. D) 2 mol of NADH.                                                                |  |  |  |  |  |  |  |  |  |
|    | E)                                    | E) none of the above.                                                                          |  |  |  |  |  |  |  |  |  |
|    |                                       |                                                                                                |  |  |  |  |  |  |  |  |  |
| 15 |                                       | aring strenuous exercise, the NADH formed in the glyceraldehyde 3-phosphate                    |  |  |  |  |  |  |  |  |  |
|    |                                       | dehydrogenase reaction in skeletal muscle must be reoxidized to NAD <sup>+</sup> if glycolysis |  |  |  |  |  |  |  |  |  |
|    | is t                                  | to continue. The most important reaction involved in the reoxidation of NADH                   |  |  |  |  |  |  |  |  |  |
|    | is:                                   |                                                                                                |  |  |  |  |  |  |  |  |  |
|    | A)                                    |                                                                                                |  |  |  |  |  |  |  |  |  |
|    | 15                                    | B) glucose 6-phosphate → fructose 6-phosphate                                                  |  |  |  |  |  |  |  |  |  |
|    | C)                                    |                                                                                                |  |  |  |  |  |  |  |  |  |
|    | D)                                    | <u> </u>                                                                                       |  |  |  |  |  |  |  |  |  |
|    | E)                                    | pyruvate → lactate                                                                             |  |  |  |  |  |  |  |  |  |

11 An integral membrane protein can be extracted with:

A) a buffer of alkaline or acid pH.

| 16 | Which combination of cofactors is involved in the conversion of pyruvate to |
|----|-----------------------------------------------------------------------------|
|    | acetyl-CoA?                                                                 |

- A) Biotin, FAD, and TPP
- B) Biotin, NAD<sup>+</sup>, and FAD
- C) NAD<sup>+</sup>, biotin, and TPP
- D) Pyridoxal phosphate, FAD, and lipoic acid
- E) TPP, lipoic acid, and NAD<sup>+</sup>

Malonate is a competitive inhibitor of succinate dehydrogenase. If malonate is added to a mitochondrial preparation that is oxidizing pyruvate as a substrate, which of the following compounds would you expect to decrease in concentration?

A) Citrate

B) Fumarate

C) Isocitrate

D) Pyruvate

- E) Succinate
- 18 Conversion of 1 mol of acetyl-CoA to 2 mol of CO<sub>2</sub> and CoA via the citric acid cycle results in the net production of:

A) 1 mol of citrate

B) 1 mol of FADH<sub>2</sub>

C) 1 mol of NADH

D) 1 mol of oxaloacetate

- E) 7 mol of ATP
- 19 Transport of fatty acids from the cytoplasm to the mitochondrial matrix requires:
  - A) ATP, carnitine, and coenzyme A
  - B) ATP, carnitine, and pyruvate dehydrogenase
  - C) ATP, coenzyme A, and hexokinase
  - D) ATP, coenzyme A, and pyruvate dehydrogenase
  - E) carnitine, coenzyme A, and hexokinase
- 20 The conversion of palmitoyl-CoA (16:0) to myristoyl-CoA (14:0) and 1 mol of acetyl-CoA by the β-oxidation pathway results in the net formation of:
  - A) 1 FADH, and 1 NADH

B) 1 FADH<sub>2</sub> and 1 NADPH

C) 1 FADH<sub>2</sub>, 1 NADH, and 1 ATP

D) 2 FADH, and 2 NADH

E) 2 FADH<sub>2</sub>, 2 NADH, and 1 ATP

### 第三頁 共三頁

| 21               | The carbon atoms from a fatty acid                                                    | s from a fatty acid with an odd number of carbons will enter the |  |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|
|                  | citric acid cycle as acetyl-CoA and                                                   |                                                                  |  |  |  |  |  |  |  |
|                  | A) butyrate                                                                           | B) citrate                                                       |  |  |  |  |  |  |  |
|                  | C) malate                                                                             | D) succinyl-CoA                                                  |  |  |  |  |  |  |  |
|                  | E) α-ketoglutarate                                                                    |                                                                  |  |  |  |  |  |  |  |
| 22               | Transamination from alanine to $\alpha$ -ketoglutarate requires the coenzyme:         |                                                                  |  |  |  |  |  |  |  |
|                  | A) biotin                                                                             | B) NADH                                                          |  |  |  |  |  |  |  |
|                  | C) No coenzyme is involved                                                            | D) pyridoxal phosphate (PLP)                                     |  |  |  |  |  |  |  |
|                  | E) thiamine pyrophosphate (TPP)                                                       |                                                                  |  |  |  |  |  |  |  |
|                  |                                                                                       |                                                                  |  |  |  |  |  |  |  |
| 23               | Serine or cysteine may enter the citric acid cycle as acetyl-CoA after conversion to: |                                                                  |  |  |  |  |  |  |  |
|                  | A) oxaloacetate                                                                       | B) propionate                                                    |  |  |  |  |  |  |  |
|                  | C) pyruvate                                                                           | D) succinate                                                     |  |  |  |  |  |  |  |
|                  | E) succinyl-CoA                                                                       |                                                                  |  |  |  |  |  |  |  |
|                  |                                                                                       |                                                                  |  |  |  |  |  |  |  |
| 24               | During oxidative phosphorylation, the proton motive force that is generated by        |                                                                  |  |  |  |  |  |  |  |
|                  | electron transport is used to                                                         |                                                                  |  |  |  |  |  |  |  |
|                  | A) create a pore in the inner mitochondrial membrane                                  |                                                                  |  |  |  |  |  |  |  |
|                  | B) generate the substrates (ADP ar                                                    | strates (ADP and P <sub>i</sub> ) for the ATP synthase           |  |  |  |  |  |  |  |
|                  | C) induce a conformational change in the ATP synthase                                 |                                                                  |  |  |  |  |  |  |  |
|                  | D) oxidize NADH to NAD <sup>+</sup>                                                   |                                                                  |  |  |  |  |  |  |  |
|                  | E) reduce O <sub>2</sub> to H <sub>2</sub> O                                          |                                                                  |  |  |  |  |  |  |  |
| or star selfaces |                                                                                       |                                                                  |  |  |  |  |  |  |  |
| 25               | The rate-limiting step in fatty acid synthesis is                                     |                                                                  |  |  |  |  |  |  |  |
|                  | A) condensation of acetyl-CoA and                                                     |                                                                  |  |  |  |  |  |  |  |
|                  | B) formation of acetyl-CoA from a                                                     |                                                                  |  |  |  |  |  |  |  |
|                  | C) formation of malonyl-CoA from                                                      |                                                                  |  |  |  |  |  |  |  |
|                  | D) the reaction catalyzed by acetyl                                                   |                                                                  |  |  |  |  |  |  |  |
| 放於               | E) the reduction of the acetoacetyl                                                   | group to a β-hydroxybutyryl group                                |  |  |  |  |  |  |  |
|                  | 題(共 25 分)                                                                             |                                                                  |  |  |  |  |  |  |  |
|                  |                                                                                       | phosphoenolpyruvate, two steps are practically                   |  |  |  |  |  |  |  |
|                  | rreversible.                                                                          |                                                                  |  |  |  |  |  |  |  |
|                  | a) What are these steps, and how is each                                              |                                                                  |  |  |  |  |  |  |  |
| ()               | and catabolic metabolism? (5分                                                         | n gain from having separate pathways for anabolic                |  |  |  |  |  |  |  |
| 27. (a           | a) What is the effect of pH on the bind                                               | ding of oxygen to hemoglobin (the Bohr Effect)? (5               |  |  |  |  |  |  |  |
| 99               | <del>}</del> )                                                                        |                                                                  |  |  |  |  |  |  |  |
| (t               | b) Briefly describe the mechanism of                                                  | this effect. (5 \(\frac{1}{2}\))                                 |  |  |  |  |  |  |  |

| S |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |