元智大學 107 學年度 碩士班 招生試題卷

系(所)別:工業工程與管理 組別:不分組 學系碩士班

科目:作業研究

用紙第/頁共2頁

●不可使用電子計算機

1. Consider the following linear programming problem.

Maximize $z = 5x_1 + x_2$

Subject to

 $x_1 - x_2 \le 9$

 $-x_1-x_2 \le 2$

 $x_1 + x_2 \le 7$

 $x_1 \ge 0$

 x_2 unrestricted

- (a) Solve this problem graphically. (13%)
- (b) Transform the problem so that all variables are nonnegative and solve resulting problem by the simplex algorithm. (12%)
- Consider the cost matrix in the following table for a transportation problem in which the objective is to minimize cost.

Source -	Destination			
	1	2	3	- Supply
1	\$8	\$5	\$4	40
2	\$6	\$8	\$9	40
Demand	30	20	30	

- (a) Write down the linear programming formulation for this problem. (9%)
- (b) Set up the transportation tableau and use the northwest corner rule to find an initial basic feasible solution. (8%)
- (c) Beginning with the initial solution found in part (b), solve the problem using the transportation simplex method. (8%)
- 3. For the one-step transition probability matrix of the following Markov Chain (1 \sim 6 are the states), try to answer the following problems.

	1	2	3	4	5	6
1	Γ0.3	0.2	0.0	0.5	0.0	0.0
2	0.2	0.4	0.0 0.0 1.0 0.0 0.3 0.0	0.4	0.0	0.0
3	0.0	0.0	1.0	0.0	0.0	0.0
4	0.5	0.2	0.0	0.3	0.0	0.0
5	0.0	0.0	0.3	0.3	0.2	0.2
6	$L_{0.0}$	0.0	0.0	0.0	0.5	0.5

- (a) Draw the transition probability diagram. (13%)
- (b) Which states are transient? (4%) Which states are recurrent? (4%) Which states are absorbing? (4%)

元智大學 107 學年度 碩士班 招生試題卷

系(所)別:工業工程與管理 舉系碩士班 組別:不分組

科目:作業研究

用紙第2頁共2頁

●不可使用電子計算機

4. Peter is the coach of a university basketball team. He is trying to choose the starting lineup for the basketball team. The team consists of seven players who have been rated (on a scale of 1=poor to 3=excellent) according to their ball-handling, shooting, rebounding, and defensive abilities. The positions (G= guard, F=forward, C=center) that each player is allowed to play and the player's abilities are listed in the following Table.

Player	Position	Ball-Handling	Shooting	Rebounding	Defense
1	G	3	3	1	3
2	G-C	2	1	3	2
3	G-F	2	3	1	2
4	F-C	1	3	2	1
5	G	3	3	2	3
6	F	3	1	2	3
7	G-F	3	2	2	1

The five-player starting lineup must satisfy the following restrictions:

- (1) At least 4 members must be able to play guard, at least 2 members must be able to play forward, and at least 1 member must be able to play center.
- (2) The average rebounding level of the starting lineup must be at least 2.
- (3) If player 3 starts, then player 6 cannot start.
- (4) If player 1 starts, then players 4 must start.

Given these constraints, Peter wants to maximize the total defensive ability of the starting team. Formulate an IP that will help him choose his starting team. (25%)