元智大學 107 學年度 碩士班 招生試題卷

系(所)別:電機工程學系碩 出別:甲組 士班

科目:電子學

用紙第1頁共之頁

●不可使用電子計算機

Problem 1: (18%) For the bridge rectifier circhit shown in Fig. 1, V_m is a 100-Hz 5-V peak sine wave with zero offset, $D_I \sim D_J$ are diodes with a constant voltage drop $V_D = 0.7$ V. Use the constant-voltage-drop diode mode to find the following:

- (a) Draw wavforms V_{in} and V_{out} vesus time with their maximum amplitudes. (6%)
- (b) Remove D_l , make terminals a and b open circuit, and please draw wavforms V_{ln} and V_{out} vesus time with their maximum amplitudes. (6%)
- (c) Make terminals a and b short circuit, and please draw wavforms V_{im} and V_{out} vesus time with their maximum amplitudes. (6%)

Problem 2: (15%) For a CMOS inverter with matched MOSFETs having $V_{th} = 0.7 \text{ V}$, if $V_{DD} = 3.3 \text{ V}$, find (a) input low level, V_{IL} , (b) input high level, V_{IH} , and (c) noise margins.

Problem 3: (17%) (a) Sketch a static CMOS logic circuit that realizes the function $\overline{A(B+CD)}$. (9%) (b) Provide the W/L ratios for nMOS and pMOS transistors. Assume that for the basic CMOS inverter $(W/L)_n = 2$ and $(W/L)_p = 5$. (8%)

元智大學 107 學年度 碩士班 招生試題卷

系(所)別:電機工程學系碩 組別:甲組 士班

科目:電子學

用紙第2頁共2頁

●不可使用電子計算機

Problem 4: (25%) Consider a typical Opamp with two amplification stages (A_{v1} and A_{v2}). The input and output impedance of each stage is denoted as R_{in1} , R_{out1} , R_{in2} , and R_{out2} . A compensation capacitance C_{e} is placed across A_{v2} .

- (a) Determine the bandwidth of the Opamp by Miller Effect. (10%)
- (b) Redo (a) without using Miller Effect. (5%)
- (c) Under what condition will the results of (a) and (b) become identical? (10%)

Fig. 2

Problem 5: (25%) A fully differential telescopic Opamp is shown below with the parameters: $μ_n C_{ox} = 100μA/V^2$, $μ_p C_{ox} = 50μA/V^2$, $λ_n = λ_p = 0.2 V^{-1}$, γ = 0, $V_{THN} = |V_{THP}| = 0.7 V$, $V_{DD} = 3 V$, $I_{M9} = 1 mA$, $V_{OD9} = V_{GS9} - V_{TH9} = 0.4 V$. M_{1-4} : (W/L)=1000, M_{5-8} : (W/L)=2000.

- (a) Calculate the dc gain. (10%)
- (b) Determine the maximum differential output swing. (5%)
- (c) Using resistive feedback with the Opamp to construct a voltage amplifier with typical dc gain of 10dB. Draw the circuit with the calculated resistance and calculate the gain error. (10%)

Fig. 3.