# 國立臺灣師範大學 107 學年度碩士班招生考試試題

科目:物理化學

適用系所: 化學系

注意:1.本試題共5頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

### I. Quantum mechanics (35 points)

- 1. The moment for a particle in classical mechanics is p = mV and in quantum mechanics is  $\hat{p} = -i\hbar \frac{d}{dx}$ 
  - (a) What is the difference of moment between classical and quantum mechanics? (3 points)
  - (b) The kinetic energy is p<sup>2</sup>/2m, what are the kinetic energies in classical and quantum mechanics. (3 points)
- 2. Write down the Schrodinger equations for (9 points)
  - (a) particle-in-a-box in two dimension as the related potential  $\hat{V}$  is

$$\begin{cases}
\hat{V} = \infty : x < 0, x > a; \ y < 0, y > b \\
\hat{V} = 0 : 0 \le x \le a; \ 0 \le y \le b
\end{cases}$$

- (b) harmonic oscillator in one dimension as the related potential  $\hat{V} = \frac{1}{2}kx^2$
- (c) hydrogen atom in three dimension as the related potential energy  $\hat{V} = \frac{-s^2}{4\pi\epsilon r}$
- 3. Solve the Schrodinger equations in Question 2(a)
  - (a) Separate the Harmitionian and wavefunctions in x and y coordinates, as  $\widehat{H} = \widehat{H}_x + \widehat{H}_y$  and  $\psi(x,y) = X(x)Y(y)$ . Show the Schrodinger equation can be separated as  $\widehat{H}_xX(x) = E_xX(x)$  and  $\widehat{H}_yY(y) = E_yY(y)$  in x and y coordinates, respectively. (3 points)
  - (b) Solve the Schrodinger and find the energy of  $E_x$  and  $E_y$  (3 points)
- 4. Solve the Schrodinger equation in Question 2(b)

  The solution for the Schrodinger equation in Question 2(b) is  $\varphi = e^{-\frac{\alpha x^2}{2}} H_n(x)$  as  $H_n(x)$  is Hermite polynomial. The recurrence relation for the coefficients  $(a_n)$  of Hermite polynomial is

## 國立臺灣師範大學107學年度碩士班招生考試試題

$$a_{n+2} = \frac{\alpha + 2n\alpha - \frac{2mE}{\hbar^2}}{(n+1)(n+2)} a_n$$
 as  $\alpha = \frac{\sqrt{km}}{\hbar}$ 

Show the energy is

$$E = \left(n + \frac{1}{2}\right)\hbar\omega$$
, where  $\omega = \sqrt{\frac{k}{m}}$  (3 points)

- 5. Solve the Schrodinger equation in Question 2(c)
  - (a) The angular part of the Schrodinger equation in Question 2(c) is

$$\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial Y(\theta,\varphi)}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2 Y(\theta,\varphi)}{\partial\varphi^2} = -cY(\theta,\varphi)$$
, as  $Y(\theta,\varphi)$  is associated Legendre

polynomial and c is square of angular moment. The recurrence relation for the coefficients  $(a_i)$  of associated Legendre polynomial

$$a_{j+2} = \frac{[(j+|m|)(j+|m|+1) - \frac{c}{\hbar^2}]}{(j+1)(j+2)}a_j$$

Show the angular moment is

$$c = l(l+1)\hbar^2$$
, where  $l = (j+|m|)$  (3 points)

(b) The radial part of the Schrodinger equation in Question 2(c) is

 $\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial R(r)}{\partial r} \right) + \left( -\frac{l(l+1)}{r^2} + \frac{2Z}{r} + 2E \right) R(r)$  as R(r) is associated Laguerre functions and E is energy. The recurrence relation for the coefficient  $(b_j)$  of associated Laguerre polynomials

$$b_{j+1} = \frac{[2C + 2Cl + 2Cj - 2Z/a]}{j(j+1) + 2(l+1)(j+2)} b_j$$
 as  $C = \left(\frac{-2E}{as^2}\right)^{1/2}$  and  $a = \frac{\hbar^2}{ms^2}$ 

show the energy as

$$E = -\frac{z^2}{n^2} \left(\frac{e^2}{2a}\right) = -\frac{z^2 m e^4}{n^2 \hbar^2}$$
, where  $n = (j+l+1)$  (3 points)

6. The wavefunction of 1s<sup>2</sup> can be written the Slater determinant

$$\varphi(1,2) = \begin{vmatrix} 1s(1)\alpha(1) & 1s(2)\alpha(2) \\ 1s(1)\beta(1) & 1s(2)\beta(2) \end{vmatrix}.$$

- (a) Write down the wavefunction of  $1s^2$  and show that the wavefunction is antisymmetric  $\varphi(1,2) = -\varphi(2,1)$  (3 points)
- (b) Write down the Slater determinant for the wavefunction of 1s<sup>1</sup>2s<sup>1</sup>. (2 points)

### 國立臺灣師範大學 107 學年度碩士班招生考試試題

#### II. Thermodynamics (30 points)

[Notations H: enthalpy, U: internal energy, S: entropy, S sur: entropy of surroundings, S\_total=S+ S\_sur, A: Helmholtz free energy, G: Gibbs free energy, p: pressure, T: temperature, V: volume, V<sub>m</sub>: molar volume, n: number of moles, R: ideal gas constant, q: heat, w: work,  $C_{Vm}$ : molar heat capacity at constant volume,  $C_{p,m}$ : molar heat capacity at constant pressure, rev: reversible

- 1. Thermodynamics: (單選題 5 分)Consider an adiabatic reversible process of a monoatomic ideal gas of 1 mole. The initial state is (V<sub>1</sub>,T), where V and T are volume and temperature, respectively. The volume of the final state is V<sub>2</sub>. The entropy change,  $\Delta S$ , of this process is:
  - (A) R
- (B) R ln  $(V_2/V_1)$  (C) R  $[(V_1/V_2)^{2/3}-1]$  (D) RT  $[(V_1/V_2)^{3/2}-1]$ 
  - (E) 2R
- (F)  $2R \ln (V_2/V_1)$  (G)  $2R [(V_1/V_2)^{2/3}-1]$  (H)  $2RT [(V_1/V_2)^{3/2}-1]$

- (I) 3R
- (J)  $3R \ln (V_2/V_1)$  (K)  $3R [(V_1/V_2)^{2/3}-1]$  (L)  $3RT [(V_1/V_2)^{3/2}-1]$
- (M) 3R/2 (N)  $3R \ln (V_2/V_1)/2$  (O)  $3R [(V_1/V_2)^{2/3}-1]/2$  (P)  $3RT [(V_1/V_2)^{3/2}-1]/2$
- (Q)5R/2 (R) 5R ln  $(V_2/V_1)/2$  (S) 5R  $[(V_1/V_2)^{2/3}-1]/2$  (T) 5RT  $[(V_1/V_2)^{3/2}-1]/2$
- (U) 7R/2 (V)  $7R \ln (V_2/V_1)/2$  (W)  $7R [(V_1/V_2)^{2/3}-1]/2$  (X)  $7RT [(V_1/V_2)^{3/2}-1]/2$
- (Z) none of the above. (Y) 0
- 2. Thermodynamics (單選題 5 分): The mean bond enthalpy of the C-H bond is roughly equal to which energy (in kcal/mol)?
  - (A) 0.00001 (B) 0.0001 (C) 0.001 (D) 0.01 (E) 0.1 (F) 1 (G) 2
  - (I) 10 (J) 100 (K) 1000 (L)  $10^4$  (M) $10^5$  (N) $10^6$  (O) $10^7$
  - $(Q)10^9$  (R)  $10^{10}$ .
- 3. Thermodynamics: (單選題 5 分, Choose the best answer) Which equation determines the boundary of phase transition, (choose the best answer)
  - (A) Clausius equation
- (B)Clapeyron equation (C) Schrodinger equation

(H)5

- (D) Boltzmann equation
- (E) Poisson equation
- (F) Huckel equation.

- (G) Nernst equation
- (H) van Hoff equation (I) van der Waals equation
- (J) Hemholtz equation
- (K) Planck equation.
- 4. Thermodynamics (單選題 5 分. Choose the best answer.) In thermodynamics,  $\Delta$ H (H denotes enthalpy) represents:

## 國立臺灣師範大學107學年度碩士班招生考試試題

- (A). maximum work at constant temperature (T).
- (B). maximum work at constant pressure (p).
- (C). maximum work at constant volume (V).
- (D). heat at constant T, no additional (non-expansion) work.
- (E). heat at constant p, no additional (non-expansion) work.
- (F). heat at constant V, no additional (non-expansion) work.
- (G). work at constant T and V.
- (H). work at constant T and p.
- (I). work at constant V and p.
- (J). heat at constant T and V.
- (K). heat at constant T and p.
- (L). heat at constant V and p.
- (M). heat at constant T and V, no additional work.
- (N). heat at constant T and p, no additional work.
- (O). heat at constant V and p, no additional work.
- (P). maximum additional (non-expansion) work at constant T and V.
- (Q). maximum additional (non-expansion) work at constant T and p.
- (R). maximum additional (non-expansion) work at constant V and p.
- (S). heat at constant T.
- (T). heat at constant p.
- (U). heat at constant V.
- (V). work at constant T and V, no additional work.
- (W). work at constant T and p, no additional work.
- (X). work at constant V and p, no additional work.
- 5. Thermodynamics (單選題 5 分):Temperature dependence of equilibrium constant of a reaction is found to fit the expression ln K=A+B/T+C/T³, what is standard reaction enthalpy? (R is ideal gas constant)
  - (A) RB (B) -RB (C) ATR (D) -ATR (E)  $R(3C/T^2)$  (F)  $-R(3C/T^2)$
  - (G)  $R(2C/T^2)$  (H)  $-R(2C/T^2)$  (I)  $R(B+3C/T^2)$  (J)  $-R(B+3C/T^2)$
  - (K)  $R(-A T+2C/T^2)$  (L)  $-R(-A T+2C/T^2)$  (M) 0 (N) nART (O) -nART
  - $(P) nRT \qquad (Q) -nRT$
- 6. Thermodynamics(簡答題 5 分,全對才給分): (∂T/∂p)<sub>S</sub>=(∂X/∂Y)<sub>p</sub> is one of Maxwell relations. What are X and Y?

# 國立臺灣師範大學 107 學年度碩士班招生考試試題

### III. Kinetics (35 points)

1. An experiment was carried out for determining the kinetics of a bimolecular irreversible reaction,  $A + B \stackrel{k}{\to} P$ . Use the results in the following table:

| Temperature | Initial concentration of B | time  | Concentration of A      |
|-------------|----------------------------|-------|-------------------------|
| 300K        | 0.1M                       | 0     | 1.00x10 <sup>-4</sup> M |
|             |                            | 69.3s | $5.00 \times 10^{-5} M$ |
|             |                            | 100s  | $3.68 \times 10^{-5} M$ |
| 450K        | 0.0369M                    | 0     | 1.00x10 <sup>-4</sup> M |
|             |                            | 69.3s | $5.00 \times 10^{-5} M$ |
|             |                            | 100s  | $3.68 \times 10^{-5} M$ |

- (a) Determine the rate constant, k, at 300K and 450K.(8 points)
- (b) Determine the activation energy of the reaction. (7 points)
- 2. The mechanism of stratospheric ozone reaction is following:

$$O_3 + M \underset{k_{-1}}{\overset{\kappa_1}{\rightarrow}} O_2 + O + M$$

$$O_3+O\stackrel{k_2}{\to} 2O_2$$

Each step is an elementary step.

- (a) Write down the rate laws (differential form) for [O<sub>3</sub>] and [O]. (4 points)
- (b) Employing the steady-state approximation, show that:

$$\frac{d[O_3]}{dt} = k_{app}[O_3][M]$$

and express the apparent rate constant,  $k_{app}$ , in terms of  $k_1$ ,  $k_{-1}$ ,  $k_2$ , and concentrations of species involved. (10 points)

(c) What circumstance makes the depletion rate of ozone second-order to the ozone concentration? (6 points)