國立臺灣師範大學107學年度碩士班招生考試試題

科目:高等微積分 適用系所:數學系

注意:1.本試題共 1 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

- 1. (10 points) Does there exist a continuous function $f:[0,1] \to \mathbb{R}$ such that $f([0,1]) = \mathbb{R}$? Justify your answer.
- 2. (10 points) Let $f:[a,b] \to \mathbb{R}$ be continuous and $c \in [a,b]$. If f(c) > 0, show that there exists a closed interval $[a',b'] \subset [a,b]$ on which f is positive.
- 3. (10 points) Let $f: \mathbb{R} \to \mathbb{R}$ be of C^n . If $f(x_0) = f(x_1) = \cdots = f(x_n)$ where $x_0 < x_1 < \cdots < x_n$, show that there exists $c \in (x_0, x_n)$ such that $f^{(n)}(c) = 0$.
- 4. (10 points) Find the limit $\lim_{n\to\infty} \int_0^{1/2} \sin(x^n) dx$.
- 5. (10 points) Indicate why the following calculation is incorrect:

$$\int_{-1}^{2} \frac{1}{x} \, \mathrm{d}x = \ln|x| \Big|_{x=-1}^{x=2} = \ln 2.$$

Correct it.

- 6. (10 points) Let $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\}$ be a subset of \mathbb{R} .
 - (a) Find a point $p \in \mathbb{R} \setminus E$ such that $E \cup \{p\}$ is compact.
 - (b) Show that if a subset C of E is compact, then C must be a finite set (or empty).
- 7. (10 points) Let the function f be defined on $\mathbb{R}^2 \setminus \{(0,0)\}$ by

$$f(x,y) = \frac{x^2y}{x^4 + y^2}, \qquad (x,y) \neq (0,0).$$

Does $\lim_{(x,y)\to(0,0)} f(x,y)$ exist? Justify your answer.

- 8. (10 points) Let $r = r(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ be the function defined on \mathbb{R}^3 . Compute $\frac{\partial^2 r}{\partial x^2} + \frac{\partial^2 r}{\partial y^2} + \frac{\partial^2 r}{\partial z^2}$.
- 9. (10 points) Find all extrema of the function f(x, y, z) = xy subject to the constraints $x^2 + y^2 + z^2 = 1$ and 2x + y + z = 0.
- 10. (10 points) Let E be a nonempty Jordan region in \mathbb{R}^n and $x_0 \in E$. If $f: E \to \mathbb{R}$ is integrable and continuous at x_0 , prove that

$$\lim_{r \to 0+} \frac{1}{\text{Vol}(B_r(x_0))} \int_{B_r(x_0)} f \, dV = f(x_0).$$

(Remark. $B_r(x_0)$ is the open ball in \mathbb{R}^n centered at x_0 with radius r, and $\operatorname{Vol}(B_r(x_0))$ is its n-dimensional volume.)