國立臺灣師範大學107學年度碩士班招生考試試題

科目:基礎數學

適用系所:數學系

注意:1.本試題共 2 頁,請依序在答案卷上作答,並標明題號,不必抄題。2.答案必須寫在指定作答區內,否則依規定扣分。

Part I: Calculus

1. (12 points) Evaluate the integrals:

(a)
$$\int_{0}^{2} x|x-1|dx$$
; (b) $\int \frac{12x^{3}-24}{\sqrt{x^{4}-8x+5}}dx$; (c) $\int \sqrt[4]{\tan x} \sec^{2} x dx$; (d) $\int \tan x dx$.

- 2. (3 points) Find a power series for $\frac{1}{1+x^3}$, centered at 0.
- 3. (3 points) Let $\frac{dy}{dx} = xe^{9x^2}$. Find y.
- 4. (4 points) Describe the definition of the series. Prove that the series

$$\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}$$

converges.

5. (4 points) Describe the definition of an improper integral. Assume that f' is continuous on $[0, \infty)$ and $\lim_{x \to \infty} f(x) = 0$. Evaluate

$$\int_0^\infty f'(x)dx.$$

- 6. (9 points) Evaluate the derivatives: (a) $\frac{d}{dx} \left[\int_0^x \sin(t^2) dt \right]$, (b) $\frac{d}{dx} \left[\int_{x^2}^{\sin x} \sin(t^2) dt \right]$, and (c) $\frac{d}{dx} \left[\int_{x^2}^{\sin x} x \sin(t^2) dt \right]$.
- 7. (3 points) The function g(x) = 0 if x is rational and g(x) = x if x is irrational. Prove that

$$\lim_{x\to 0} g(x)$$
 exists.

- 8. (3 points) Find the volume of the solid of revolution formed by revolving the region bounded by $y = \frac{1}{\sqrt{1+x^2}}$, y = 0, x = -1 and x = 1 about the x-axis
- 9. (4 points) Find the volume of the solid region bounded above by the hemisphere

$$z = \sqrt{9 - x^2 - y^2}$$

and below by the circular region R given by $x^2 + y^2 \le 4$.

10. (5 points) Let R be the region bounded by the lines x-2y=0, x-2y=-6, x+y=5 and x+y=1. Evaluate the double integral

$$\iint_{R} 3xydA.$$

(下頁尚有試題)

國立臺灣師範大學107學年度碩士班招生考試試題

Part II: Linear Algebra

11. Let *V* be the vector space of all polynomials with real coefficients and of degree at most 3, together with the zero polynomial. Consider the linear transformation *T* from *V* to itself defined by

$$T(p(x)) = (x-1)p'(x) + 2p''(x)$$
, for all $p(x) \in V$.

- (a) (8 points) Let $\beta = \{1, x + 1, (x + 1)^2, (x + 1)^3\}$ be an ordered basis for V. Find the matrix representation of T relative to β .
- (b) (7 points) Find the range and the kernel of T.
- 12. (10 points) Find an orthonormal basis consisting of eigenvectors of the matrix

$$A = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix}.$$

- 13. (12 points) Prove that
 - (a) Eigenvectors of a real matrix that correspond to different eigenvalues are linearly independent.
 - (b) Eigenvectors of a real symmetric matrix that correspond to different eigenvalues are orthogonal.
- 14. Let A be a real matrix of size $m \times n$. Let N(A) and R(A) denote the null space and the row space of A, respectively.
 - (a) (8 points) Prove that \mathbb{R}^n can be written as a direct sum of N(A) and R(A).
 - (b) (5 points) Let f be a function on R(A) given by f(x) = Ax. Prove that f is a one-to-one function onto the column space of A.