國立中央大學 107 學年度碩士班考試入學試題

所別: 經濟學系碩士班 不分組(一般生)

共之頁 第/頁

科目: 統計學

本科考試禁用計算器

*請在答案卷(卡)內作答

- 1. (10 points) Let $\{X_t: t=0,1,2,...\}$ be a stochastic process. Suppose that $X_{t+1}=2X_t$ with probability 1-p and $X_{t+1}=0.5X_t$ with probability p.
 - (a) Compute $E(X_{t+9}|X_t)$
 - (b) $\{X_t\}$ is said to be a martingale if $E(X_{t+1}|X_0,...,X_t)=X_t$. Determine the value of p such that $\{X_t: t=0,1,2,...\}$ is a martingale.
- 2. (26 points) Suppose that we would like to test if a given coin is fair or not. We then toss the coin 10 times. The rejection rule is proposed as follows: reject the hypothesis that it is a fair coin if 8 heads or 8 tails are observed out of 10 tosses; do not reject the fair coin hypothesis, otherwise. Given the proposed rejection rule:
 - (a) Compute the type I error of the test.
 - (b) Now suppose it is known that the coin is biased, with the probability of landing head up being 0.9, compute the power of this test.
- 3. (14 points) If $Y_1, Y_2, ..., Y_n, ...$ are i.i.d. normal distribution $N(0, \sigma^2)$. Show asymptotic distributions of $\left(\frac{\overline{Y}}{\sqrt{n}}\right)$ and $\left(\frac{\sum_{i=1}^n Y_i^2}{s^2 \sqrt{n}}\right) \sqrt{n}$, where $\overline{Y} = \frac{\sum_{i=1}^n Y_i}{n}$ and $s^2 = \frac{\sum_{i=1}^n (Y_i^2 \overline{Y})^2}{(n-1)^2}$
- 4. (50 points) The following ordinary least square regression analysis was conducted:

Earnings_i =
$$\beta_0 + \beta_1 age_i + \beta_2 age_i^2 + \beta_3 PartTime_i + \beta_4 (age_i \times PartTime_i) + \varepsilon_i$$

where Earnings= worker i's earnings, age = worker i's age, $age^2 = age \times age$, PartTime =1 if i works part time; =0, otherwise, and $\varepsilon_i \sim N(0, \sigma^2)$. The computer printout for the regression is shown below:

Predictor	Coefficient	95% confidence interval	
Constant	3.22	2.38	4.06
age	0.08	0.05	0.12
age^2	001	0015	0006
PartTime	41	-1.11	.279
age × PartTime	006	021	.008

國立中央大學 107 學年度碩士班考試入學試題

所別: 經濟學系 碩士班 不分組(一般生)

共 之頁 第 之頁

科目: 統計學

本科考試禁用計算器

*請在答案卷(卡)內作答

Analysis of Variance

 Source
 df
 SS

 Model
 606.2

 Residual
 3698

 Total
 24515.4

Based on the regression results, answer the following questions.

- (a) (10 points) Residual variation of Earnings = ? \overline{R}^2 =?
- (b) (10 points) Conduct the F test for the goodness of fit for the model. State the corresponding null and alternative hypotheses and make the conclusion. (α =0.05) (Note: $F_{0.025}(4,3698) \cong 2.80$, $F_{0.05}(4,3698) \cong 2.38$, $F_{0.025}(5,3698) \cong 2.58$, $F_{0.05}(5,3698) \cong 2.22$.)
- (c) (10 points) What is the marginal effect of the variable "age" for a part time worker? At what age will a part-timer obtain his (or her) highest earnings? How about that for a full-time worker? Explain your findings.
- (d) (10 points) Is the following statement true, false or uncertain? Explain. (Please provide detail explanations.)
 - "The variables "PartTime" and "age × PartTime" should be deleted from the model, because their coefficient estimates are statistically nonsignificant."
- (e) (10 points) Now suppose σ^2 increases with worker's age. How would this relationship influence the OLS estimators? (Please provide detail explanations.)

