國立中央大學 107 學年度碩士班考試入學試題

所別: 統計研究所 碩士班 不分組(一般生)

共2頁 第1頁

統計研究所 碩士班 不分組(在職生)

科目: 基礎數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

1. (20 points)

(a) (10 points) Young's inequality: Let a > 0 and b > 0 and $\frac{1}{p} + \frac{1}{q} = 1$, $1 < p, q < \infty$. Prove that

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

(Hint: Use the convex function $f(x) = e^x$ and choose $a^p = e^x$ and $b^q = e^y$.)

(b) (10 points) Suppose that

$$\int_0^\infty f(x)dx = 1 \text{ and } \int_0^\infty e^{kx} f(x)dx < \infty$$

for k > 0. Prove that

$$\sqrt[t]{\int_0^\infty x^t f(x) dx}$$

is non-decreasing in t.

(Hint: Use Young's inequality.)

2. (20 points)

Let $f:[0,\infty)\mapsto [0,\infty)$ be a non-increasing function with $f(x)\to 0$, as $x\to\infty$. Then, there exists a continuous function $g:[0,\infty)\mapsto (0,\infty)$ such that

$$\int_0^\infty g(x)dx = +\infty \text{ but } \int_0^\infty f(x)g(x)dx < \infty.$$
 (1)

Let \widetilde{f} be a strictly positive continuously differentiable with $\widetilde{f}(x) \geq f(x)$, for all $x \geq 0$, with $\widetilde{f}(x) \to 0$, as $x \to \infty$. With such \widetilde{f} and $g = -\widetilde{f}'/\widetilde{f}$, prove that (1) holds.

注意:背面有試題

參考用

國立中央大學 107 學年度碩士班考試入學試題

所別: 統計研究所 碩士班 不分組(一般生)

共工頁 第2頁

統計研究所 碩士班 不分組(在職生)

科目: 基礎數學

本科考試可使用計算器,廠牌、功能不拘

*請在答案卷(卡)內作答

3. (20 points)

(a) (6 points) Compute

$$\int_{-\infty}^{0} \int_{-y}^{\infty} e^{-(x^2+y^2)} dx dy.$$

(b) (7 points) Compute

$$\int \int \int \int_D e^{-(x^2+y^2+z^2)} dx dy dz,$$

where $D = \{(x, y, z) : x^2 + y^2 \le z^2, \ x \ge 0\}.$

(c) (7 points) Compute

$$\int_0^\pi \cos mx \cos nx dx,$$

for non-negative integers m, n.

(Need to show the details of the calculation)

4. (20 points)

À curve is given by

$$3x^2 + 5xy + 3y^2 = 1.$$

Find the minimum distance from the points on the curve to the origin.

5. (20 points)

A $n \times n$ matrix P is idempotent and symmetric. Prove that

(a) (5 points) $I_n - P$ is also an idempotent matrix, where I_n is the $n \times n$ identity matrix.

(b) (5 points) P is a positive semi-definite matrix.

(c) (5 points) If rank $[P] = r \le n$, then it has r eigenvalues equal to unity and n - r eigenvalues equal to zero.

(d) (5 points) tr[P] = rank[P].

注意:背面有試題

