科目：化工動力學
考試時間： 100 分鐘

系所：化學工程及材料工程學系
（無組別）
本科原始成績：100分

是否使用計算機：是

I．Single choice（4 points each， $\mathbf{4 8}$ points total）

1．Liquid A decomposes by first－order kinetics，and in a batch reactor 50% of A is converted to product in a 5 －minute run．How much longer would it take to reach 75% conversion？（A） 5 min， （B） $10 \mathrm{~min},(\mathrm{C}) 15 \mathrm{~min},(\mathrm{D}) 20 \mathrm{~min}$, （E）can not determine．
2．Repeat the above question for second－order kinetics．（A） 5 min ，（B） $10 \mathrm{~min},(\mathrm{C}) 15 \mathrm{~min}$ ，（D） 20 $\min ,(\mathrm{E})$ can not determine．
3．If $-r_{\mathrm{A}}=0.2 \mathrm{~mol} /$ liter－sec when $\mathrm{C}_{\mathrm{A}}=1 \mathrm{~mol} /$ liter，what is the rate of reaction $\left(-r_{\mathrm{A}}\right)$ when $\mathrm{C}_{\mathrm{A}}=10$ $\mathrm{mol} / \mathrm{l}$ ？（A） $1 \mathrm{~mol} /$ liter－sec，（B） $2 \mathrm{~mol} /$ liter－sec，（C） $20 \mathrm{~mol} /$ liter－sec，（D） $0.2 \mathrm{~mol} /$ liter－sec，（E）can not determine．
4．What is the half－life for a third－order reaction of reactant A ？（A） $0.693 / \mathrm{k},(\mathrm{B}) \mathrm{k},(\mathrm{C}) 1 /\left(\mathrm{kC} \mathrm{C}_{\mathrm{A} 0}\right)$ ， （D） $\mathrm{C}_{\mathrm{A} 0} / 2 \mathrm{k}$ ，（E） $3 /\left(2 \mathrm{kC}_{\mathrm{A} 0}{ }^{2}\right) . \quad\left(\mathrm{k}\right.$ is the rate constant and $\mathrm{C}_{\mathrm{A} 0}$ is the initial concentration of A$)$
5．What is the half－life for a zero－order reaction of reactant A ？（A） $0.693 / \mathrm{k},(\mathrm{B}) \mathrm{k},(\mathrm{C}) 1 /\left(\mathrm{kC} \mathrm{C}_{\mathrm{A} 0}\right)$ ， （D） $\mathrm{C}_{\mathrm{A} 0} / 2 \mathrm{k}$ ，（E） $3 /\left(2 \mathrm{kC}_{\mathrm{A} 0}{ }^{2}\right) . \quad\left(\mathrm{k}\right.$ is the rate constant and $\mathrm{C}_{\mathrm{A} 0}$ is the initial concentration of A$)$
6．A reaction $2 \mathrm{~A} \rightarrow 2 \mathrm{~B}+\mathrm{C}$ with the rate law $-r_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}}{ }^{2}$ ．What is the rate law for the reaction $\mathrm{A} \rightarrow \mathrm{B}+1 / 2 \mathrm{C}$ ？（A）$-r_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}},(\mathrm{B})-r_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}}{ }^{2},(\mathrm{C})-r_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}}{ }^{3},(\mathrm{D})-r_{\mathrm{A}}=\mathrm{k} \mathrm{C}_{\mathrm{A}}{ }^{1 / 2}$ ．
7．For the reaction $A \longrightarrow$ products，if the plot of $1 / C_{A}^{2}$ vs t is linear．What is the reaction order for the reaction？（A） $0,(\mathrm{~B}) 1,(\mathrm{C}) 2$ ，（D） 3 ，（E） $1 / 2$ ．
8．For parallel reactions

$$
\begin{array}{lll}
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{D}, & \text { desired, } & r_{\mathrm{D}}=\mathrm{C}_{\mathrm{A}}{ }^{0.4} \mathrm{C}_{\mathrm{B}}^{1.6} \\
\mathrm{~A}+\mathrm{B} \longrightarrow \mathrm{U}, & \text { undesired, } & r_{\mathrm{U}}=\mathrm{C}_{\mathrm{A}}^{1.0} \mathrm{C}_{\mathrm{B}}^{0.2}
\end{array}
$$

Which of the following reactor types（or schemes）is the best for reducing C_{U} ？（A）CSTR，（B） PFR，（C）Batch，（D）Semi－batch
9．For parallel reactions

$$
\begin{array}{lll}
\mathrm{A} \longrightarrow \mathrm{D}, & \text { desired, } & r_{\mathrm{D}}=k_{\mathrm{D}} \mathrm{C}_{\mathrm{A}} \\
\mathrm{~A} \longrightarrow \mathrm{U}, & \text { undesired, } & r_{\mathrm{U}}=k_{\mathrm{U}} \mathrm{C}_{\mathrm{A}}^{2}
\end{array}
$$

Which of the following reactor types is the best for maximizing C_{D} ？（A）CSTR，（B）PFR，（C） Batch．
10．An irreversible second－order liquid－phase reaction gave 80% conversion in a batch reactor in 200 min ．What would be the conversion of this reaction in a CSTR with a 200 min space time？ （A） 50% ，（B） 61% ，（C） 85% ，（D） 90% ，（E）can not determine．
11．Repeat the above question．What space time would be required for 80% conversion in a CSTR？ （A） 100 min ，（B） 200 min ，（C） 500 min ，（D） 1000 min ，（E）can not determine．
12．An irreversible second order reaction $A \longrightarrow B$ is to be carried out isothermally in a plug－flow reactor（PFR）．Calculate PFR reactor volumes necessary to consume 99% of A （i．e．，$C_{\mathrm{A}}=0.01$ $C_{\mathrm{A} 0}$ ）when the entering molar flow rate $\left(F_{\mathrm{A} 0}\right)$ is $5 \mathrm{~mol} / \mathrm{h}$ and k is $3 \mathrm{dm}^{3} / \mathrm{molh}$ ．（A） $99 \mathrm{dm}^{3}$ ，（B） $128 \mathrm{dm}^{3}$ ，（C） $500 \mathrm{dm}^{3}$ ，（D） $660 \mathrm{dm}^{3}$ ，（E） $2750 \mathrm{dm}^{3}$ ．

II．（17 points）

Consider the following system of gas－phase reactions：

$$
\begin{array}{lll}
\mathrm{A} \longrightarrow \mathrm{X} & r_{\mathrm{X}}=k_{1} C_{\mathrm{A}}^{1 / 2} & k_{1}=0.004\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)^{1 / 2} \cdot \mathrm{~min} \\
\mathrm{~A} \longrightarrow \mathrm{~B} & r_{\mathrm{B}}=k_{2} C_{\mathrm{A}} & k_{2}=0.3 \mathrm{~min}^{-1} \\
\mathrm{~A} \longrightarrow \mathrm{Y} & r_{\mathrm{Y}}=k_{3} C_{\mathrm{A}}^{2} & k_{3}=0.25 \mathrm{dm}^{3} / \mathrm{mol} \cdot \mathrm{~min}
\end{array}
$$

科目：化工動力學考試時間：100分鐘

系所：化學工程及材料工程學系
（無組別）
本科原始成績：100 分

是否使用計算機：是

B is the desired product，and X and Y are undesired products．The rate constants are at $27^{\circ} \mathrm{C}$ ．The reaction system is to be operated at $27^{\circ} \mathrm{C}$ and 4 atm ．Pure A enters the system at a volumetric flow rate of $10 \mathrm{dm}^{3} / \mathrm{min}$ ．
（a）What is the instantaneous selectivity $S_{\mathrm{B} / X Y}$ ？（3 points）
（b）Determine the maximum $S_{\mathrm{B} / \mathrm{XY}}$ ？At which $\mathrm{C}_{\mathrm{A}}, S_{\mathrm{B} / \mathrm{XY}}$ is maximum？（6 points）
（c）If CSTR is used to carry out this reaction at this C_{A} as determined in（b），what is the volume of CSTR？（8 points）

III．（15 points）

（a）What is active intermediate？（3 points）
（b）What is pseudo－steady－state hypothesis（PSSH）？（2 points）
（c）Use the PSSH to derive the rate law for the reaction $\mathrm{A} \longrightarrow \mathrm{P}$ for the rate of the disappearance of $\mathrm{A}\left(\right.$ i．e．，,r_{A} ）．The reaction proceeds by first forming an active intermediate， A^{*} ，from the collision of the reactant molecule and an inert molecule of M．（10 points）

The mechanism consists of the three elementary reactions：

1．Activation
2．Deactivation
3．Decomposition

$$
\mathrm{A}+\mathrm{M} \xrightarrow{k_{1}} \mathrm{~A}^{*}+\mathrm{M}
$$

$$
\mathrm{A}^{*}+\mathrm{M} \xrightarrow{k_{2}} \mathrm{~A}+\mathrm{M}
$$

$$
\mathrm{A}^{*} \xrightarrow{k_{3}} \mathrm{P}
$$

IV．（20 points）

（a）The mechanism for carbon monoxide（CO）adsorption as molecules on the surface of the catalyst is

$$
\mathrm{CO}+\mathrm{S} \rightleftarrows \mathrm{CO} \cdot \mathrm{~s}
$$

where S represents an active（vacant）site， $\mathrm{CO} \cdot \mathrm{S}$ represents that CO molecule is adsorbed on the site S ．Derive the equilibrium isotherm equation（i．e．，$C_{\mathrm{CO}} \bullet \mathrm{S}$ as a function of $P_{C O}$ ）for this adsorption．$\quad\left(C_{\mathrm{CO}} \bullet \mathrm{s}\right.$ is the concentration of the adsorbed CO on S and $P_{C O}$ is the partial pressure of CO．）
（b）The mechanism for dissociative carbon monoxide（CO）adsorption on the surface of the catalyst is

$$
\mathrm{CO}+2 \mathrm{~S} \rightleftarrows \mathrm{C} \cdot \mathrm{~S}+\mathrm{O} \cdot \mathrm{~S}
$$

Derive the equilibrium isotherm equation（i．e．，$C_{\mathrm{C}} \bullet \mathrm{s}$（ or $C_{\mathrm{O}} \bullet \mathrm{s}$ ）as a function of $P_{C O}$ ）for this adsorption．（ $C_{\mathrm{C}} \cdot \mathrm{s}$ is the concentration of the adsorbed C on S and $P_{C O}$ is the partial pressure of CO．）

