到日・ルエ乱カ輿	系所:化學工程及材料工程學系	
村日・11上町川字 老計時間・100 八倍	(無組別)	是否使用計算機:是
今武时间・100万建	本科原始成績:100分	

I. Single choice (4 points each, 48 points total)

- Liquid A decomposes by first-order kinetics, and in a batch reactor 50% of A is converted to product in a 5-minute run. How much longer would it take to reach 75% conversion? (A) 5 min, (B) 10 min, (C) 15 min, (D) 20 min, (E) can not determine.
- 2. Repeat the above question for second-order kinetics. (A) 5 min, (B) 10 min, (C) 15 min, (D) 20 min, (E) can not determine.
- If -r_A = 0.2 mol/liter-sec when C_A = 1 mol/liter, what is the rate of reaction (-r_A) when C_A = 10 mol/l? (A) 1 mol/liter-sec, (B) 2 mol/liter-sec, (C) 20 mol/liter-sec, (D) 0.2 mol/liter-sec, (E) can not determine.
- 4. What is the half-life for a third-order reaction of reactant A? (A) 0.693/k, (B) k, (C) $1/(kC_{A0})$, (D) $C_{A0}/2k$, (E) $3/(2kC_{A0}^2)$. (k is the rate constant and C_{A0} is the initial concentration of A)
- 5. What is the half-life for a zero-order reaction of reactant A? (A) 0.693/k, (B) k, (C) $1/(kC_{A0})$, (D) $C_{A0}/2k$, (E) $3/(2kC_{A0}^2)$. (k is the rate constant and C_{A0} is the initial concentration of A)
- 6. A reaction $2A \rightarrow 2B + C$ with the rate law $-r_A = k C_A^2$. What is the rate law for the reaction $A \rightarrow B + 1/2 C$? (A) $-r_A = k C_A$, (B) $-r_A = k C_A^2$, (C) $-r_A = k C_A^3$, (D) $-r_A = k C_A^{1/2}$.
- 7. For the reaction A \longrightarrow products, if the plot of $1/C_A^2$ vs t is linear. What is the reaction order for the reaction? (A) 0, (B) 1, (C) 2, (D) 3, (E) 1/2.
- 8. For parallel reactions

$A + B \longrightarrow$	D,	desired,	$r_{\rm D} = {\rm C_A}^{0.4} {\rm C_B}^{1.6}$
$A + B \longrightarrow$	U,	undesired,	$r_{\rm U} = C_{\rm A}{}^{1.0}C_{\rm B}{}^{0.2}$

Which of the following reactor types (or schemes) is the best for reducing C_U ? (A) CSTR, (B) PFR, (C) Batch, (D) Semi-batch

9. For parallel reactions

 $\begin{array}{ll} A \longrightarrow D, & \text{desired}, & r_D = k_D C_A \\ A \longrightarrow U, & \text{undesired}, & r_U = k_U C_A^2 \end{array}$

Which of the following reactor types is the best for maximizing C_D ? (A) CSTR, (B) PFR, (C) Batch.

- 10. An irreversible second-order liquid-phase reaction gave 80% conversion in a batch reactor in 200 min. What would be the conversion of this reaction in a CSTR with a 200 min space time? (A) 50%, (B) 61%, (C) 85%, (D) 90%, (E) can not determine.
- 11. Repeat the above question. What space time would be required for 80% conversion in a CSTR?(A) 100 min, (B) 200 min, (C) 500 min, (D) 1000 min, (E) can not determine.
- 12. An irreversible second order reaction A \longrightarrow B is to be carried out isothermally in a plug-flow reactor (PFR). Calculate PFR reactor volumes necessary to consume 99 % of A (i.e., $C_A = 0.01$ C_{A0}) when the entering molar flow rate (F_{A0}) is 5 mol/h and k is 3 dm³/mol h. (A) 99 dm³, (B) 128 dm³, (C) 500 dm³, (D) 660 dm³, (E) 2750 dm³.

II. (17 points)

Consider the following system of gas-phase reactions:

A
$$\longrightarrow$$
 X $r_{\rm X} = k_1 C_{\rm A}^{1/2}$ $k_1 = 0.004 (\text{mol/dm}^3)^{1/2} \cdot \text{min}$
A \longrightarrow B $r_{\rm B} = k_2 C_{\rm A}$ $k_2 = 0.3 \text{ min}^{-1}$
A \longrightarrow Y $r_{\rm Y} = k_3 C_{\rm A}^2$ $k_3 = 0.25 \text{ dm}^3/\text{mol} \cdot \text{min}$

背面尚有試題

國立高雄大學 107 學年度研究所碩士班招生考試試題

刘日・ルエ乱カ幽	系所:化學工程及材料工程學系	
村日・11上町万字 老計時間・100 小倍	(無組別)	是否使用計算機:是
今武町间・100万建	本科原始成績:100分	

B is the desired product, and X and Y are undesired products. The rate constants are at 27 °C. The reaction system is to be operated at 27 °C and 4 atm. Pure A enters the system at a volumetric flow rate of 10 dm³/min.

- (a) What is the instantaneous selectivity $S_{B/XY}$? (3 points)
- (b) Determine the maximum $S_{B/XY}$? At which C_A, $S_{B/XY}$ is maximum? (6 points)
- (c) If CSTR is used to carry out this reaction at this C_A as determined in (b), what is the volume of CSTR? (8 points)

III. (15 points)

(a) What is active intermediate? (3 points)

- (b) What is pseudo-steady-state hypothesis (PSSH)? (2 points)
- (c) Use the PSSH to derive the rate law for the reaction A \longrightarrow P for the rate of the disappearance of A (i.e., $-r_A$). The reaction proceeds by first forming an active intermediate, A*, from the collision of the reactant molecule and an inert molecule of M. (10 points)

The mechanism consists of the three elementary reactions:

1. Activation	$A + M \xrightarrow{k_1} A^* + M$
2. Deactivation	$A^* + M \xrightarrow{k_2} A + M$
3. Decomposition	$A^* \xrightarrow{k_3} P$

IV. (20 points)

(a) The mechanism for carbon monoxide (CO) adsorption as molecules on the surface of the catalyst is

 $CO + S \iff CO \cdot S$

where *S* represents an active (vacant) site, CO \cdot S represents that CO molecule is adsorbed on the site *S*. Derive the equilibrium isotherm equation (i.e., $C_{CO} \cdot s$ as a function of P_{CO}) for this adsorption. ($C_{CO} \cdot s$ is the concentration of the adsorbed CO on S and P_{CO} is the partial pressure of CO.)

(b) The mechanism for dissociative carbon monoxide (CO) adsorption on the surface of the catalyst is

 $CO + 2S \iff C \cdot S + O \cdot S$

Derive the equilibrium isotherm equation (i.e., $C_{C \bullet S}$ (or $C_{O \bullet S}$) as a function of P_{CO}) for this adsorption. ($C_{C \bullet S}$ is the concentration of the adsorbed C on S and P_{CO} is the partial pressure of CO.)