國立臺北大學 107 學年度碩士班一般入學考試試題

系(所)組別:金融與合作經營學系

科 目:統計學

- \((10%) Let X_1 , X_2 , and X_3 be independent and have uniform distribution U(0, 1). The joint p.d.f. is $f(x_1, x_2, x_3) = 1$, where $0 \le x_1, x_2, x_3 \le 1$. What is the probability $P(X_1 + X_2 + X_3 \le 1)$? (Please show the details)

- x = 10%) There are two random variables X and Y. Given Y, X follows the conditional distribution $f(x|y) = e^{-y}y^x/x!$, where x = 0, 1, 2, ... Moreover, Y follows the distribution $f(y) = \lambda e^{-y\lambda}$, where y > 0 and $\lambda > 0$. What are expectation E(X) and the variance Var(X)? (Please show the details)
- \leq \((10%) The moment-generating function of X is $M(t) = (0.25 + 0.75e^t)^{16}$. What are the p.d.f. of X as well as the expectation E(X) and variance Var(X)? (Please show the details)
- 100/pth percentile of $\chi^2(n)$, the Chi-Square distribution with n degrees of freedom, where $0 \le p \le 1$. Namely, $P(Y \le \chi^2_{p(n)}) = p$, where $Y \sim \chi^2(n)$ Describe how you would construct a $100(1-\alpha)$ % confidence interval for the unknown variance σ^2 , where $0 \le \alpha \le 1$.
- \mathcal{L} \((10%) Let $f(x; \theta) = (1/\theta^2)xe^{-x/\theta}$, where x > 0 and $\theta > 0$. Let $X_1, X_2, ..., X_n$ denote a random sample of size n for this distribution. What is the maximum likelihood estimator of θ . (Please show the details)
- ☆ X and Y represent the results of throwing two fair dice respectively. Please calculate:
 - (-) E(X-Y). (3%)
 - (=) Var(X-Y). (6%)
 - (\equiv) If you have known that X+Y \leq 3, calculate Var(X/Y). (7%)
- $+ \cdot X$ and Y are two random variables, please derive: (12 %) Var(X) = E[Var(X|Y)] + Var(E[X|Y])
- ∴ X~Uniform(0,1) and Y~Uniform(0,1), X and Y are independent. Please derive the probability density functions of the following equations:
 - $(-) W = X^2 (10\%)$
 - (=) W = XY. (12%)