國立臺北大學107學年度碩士班一般入學考試試題

系(所)組別:經濟學系

科

目:統計學

第1頁 共3頁

☑可□□不可使用計算機

- I、選擇題 (每題5分,共30分。)
- 1. Consider the simple linear population model without intercept:

$$y_t = \beta x_t + \varepsilon_t$$

$$\varepsilon_{\iota} = \rho \varepsilon_{\iota-1} + u_{\iota},$$

where $u_i \sim i.i.d(0, \sigma^2)$. We use OLS method to estimate parameter $\hat{\beta}$. After we obtain the $\hat{\beta}$, we use OLS residuals to generate Durbin-Watson statistic. Which approximation value does Durbin-Watson statistic converge under $T \to \infty$?

- (A) 2- $\hat{\rho}$
- (B) $1-2\hat{\rho}$
- (C) $2(1-\hat{\rho})$
- (D) $1 \hat{\rho}$
- (E) $2-3\hat{\rho}$
- 2. Eric estimates a regression model as below:

$$y_t = \alpha + \beta_1 x_t + \beta_2 z_t + u_t,$$

Where $u_i \sim N(0, \sigma_u^2)$. If Eric regress x_i on z_i , he find the following equation statistically significant:

$$x_t = \omega + \delta_2 z_t + \varepsilon_t.$$

Which problem he will face when he use OLS method to estimate $\hat{\beta}_1$ and $\hat{\beta}_2$?

- (A) Multicollinearity
- (B) Serial correlation
- (C) Heteroskedasticity
- (D) Nonlinear in parameter
- (E) Random sample
- 3. Mary want to estimates a regression model as below:

$$y_t = \alpha + \beta_1 x_{1t} + \beta_2 x_{2t} + \varepsilon_t,$$

If she doubts the regression residuals $\hat{\varepsilon}_i$, with heteroskedasticity, she wants to use Breusch-Pagan test to detect whether heteroskedasticity exists in $\hat{\varepsilon}_i^2$. Which independent variables set she will choose to execute Breusch-Pagan test?

- (A) $x_{1t}x_{2t}$
- (B) x_{it} , x_{2t} , x_{1t}^2 , x_{2t}^2
- (C) x_{it} , x_{2t} , x_{1t}^2 , x_{2t}^2 , $x_{1t}x_{2t}$
- (D) x_{it} , x_{2t}
- (E) x_{it} , x_{2t} , $x_{1t}x_{2t}$
- 4. Consider the simple regression

$$y_{t} = \alpha + \beta x_{t} + \varepsilon_{t}$$

And suppose population parameter $\beta = 2$ and least square estimator $\hat{\beta} = 2.3$. Now consider the regression

$$(x_t - y_t) = \alpha^* + \beta^* x_t + u_t.$$

What is the value of $\hat{\beta}^*$?

- (A) 1
- (B) -1
- (C) -1.3
- (D) -0.3
- (E) 0.3

試題隨卷繳交

接背面

國立臺北大學 107 學年度碩士班一般入學考試試題

系(所)組別:經濟學系

目:統計學

第2頁 共3頁 ☑ □不可使用計算機

5. Consider the linear model with intercept:

$$y_t = \alpha + \beta x_t + u_t$$

If the $A = \sum_{t=1}^{T} (x_t - \overline{x})^2$ is positive definite and $E(u_t | x_t) = 0$, $\forall t = 1, 2, ..., T$, which statement is true under sample size

 $T \to \infty$

- (A) $\hat{\beta}$ is consistent, but we cannot judge whether $\hat{\beta}$ is efficiency
- (B) $\hat{\beta}$ is unbiased and efficiency
- (C) $\hat{\beta}$ is consistent and efficiency
- (D) $\hat{\beta}$ is, but we cannot judge whether $\hat{\beta}$ is efficiency
- (E) $\hat{\beta}$ is unbiased and consistent.
- 6. Consider the linear population model with intercept:

$$y_{i} = \alpha + \beta x_{i} + \varepsilon_{i}$$

The variance structure is known as below:

$$E(\varepsilon_t^2) = \sigma^2 h_t^2,$$

Which regression may obtain efficiency $\hat{\beta}$ estimator?

- (A) Regress y_t on 1, x_t
- (B) Regress y_t/h_t on $1/h_t$, x_t/h_t
- (C) Regress y_i / h_i^2 on $1 / h_i^2$, x_i / h_i^2
- (D) Regress y_i on $\frac{1}{h_i}$, $\frac{x_i}{h_i}$
- (E) Regress y_t/h_t on 1, x_t

Ⅱ、計算問答題 (每大題10分,共20分。)

1. Mary has T = 40 observations on variables y, x_1 , and x_2 . She estimates the following equations by least squares:

$$y = -2.0 + 3.5x_1 - 1.5x_2,$$
(0.7) (0.3)

Residual sum of squares (SSR)=140, $R^2 = 0.8$ where the numbers in parentheses are standard errors. What is the true value of SST in equation (1)? What is the value of s^2 (estimated error variance.)?

2. Consider the simple regression model, assume to satisfy ideal conditions:

$$x = \beta x_1 + \varepsilon_2$$

We now want to consider another estimator $\tilde{\beta}$, defined as follow. You pick two observations at random; say, t=3 and t=6.

$$\widetilde{\beta} = (y_6 - y_3)/(x_6 - x_3) \tag{3}$$

- (a). Consider the estimator $\widetilde{\beta}$. Whether is $\widetilde{\beta}$ unbiased?
- (b). Compared with OLS estimator $\hat{\beta}$, which estimators is efficiency? Please explain.

試題隨卷繳交

接下頁

國立臺北大學107學年度碩士班一般入學考試試題

系(所)組別:經濟學系

科

目:統計學

第3頁 共3頁

☑可 □不可使用計算機

Ⅲ、填空题(每格5分,共50分。)

1. Let random variable X follow a geometric distribution with parameter p, that is,

$$P(X = x) = pq^{x-1}, p+q=1, x=1,2,3,...$$

Calculate the probability of P(X > m), where m is a positive integer. (1)

- 2. Suppose $S_n = X_1 + X_2 + \dots + X_n$, where $E(X_i) = \frac{1}{n}$, $Var(X_i) = \frac{1}{n} \frac{1}{n^2}$ and $Cov(X_i, X_j) = \frac{1}{n(n-1)} \frac{1}{n^2}$ for $i \neq j$. Then, $Var(S_n) = \underbrace{(2)}_{i=1}$.
- 3. Suppose that the probability density function of X is $f(x) = 2x \exp(-x^2)$, $0 \le x < \infty$. Find the probability density function of $Y = X^2$, $f(y) = \underline{\qquad \qquad }$
- 4. Suppose that the continuous random variables (X, Y, Z) have a valid joint probability density function $f(x, y, z) = Kxyz^2$, $0 \le x, y \le 1$, $0 \le z \le 3$.

Then,
$$E(Y) = \underline{\qquad}$$
 (4) and $E(Y|X = \frac{1}{2}, Z = 1) = \underline{\qquad}$ (5) . Of course, you should find the value of K first.

- 5. If random variables $X_1, X_2, ..., X_n$ are i.i.d. $N(\mu, \sigma^2)$, and S^2 is their sample variance. Then, the distribution of $\frac{(n-1)S^2}{\sigma^2}$ is _____(6)___.
- 6. Suppose you play a game of chance where you win w dollars with probability p but lose v dollars with probability 1-p. Denote X_i the random variable. Then, how large should p be so that you, a reasonable person, are willing to play the game? (7)
- 8. In a multiple linear regression, a dependent variable is explained by a constant and 4 independent variables using 35 observations. The R^2 of this regression is 0.6. To test the significance of this regression, we can obtain the F statistic equal to ______.

試題隨卷繳交