東海大學 104 學年度碩士班招生考試試題

考試科目: 統計學 E

應考系組: 統計系甲組

考試日期:104年03月08日第4節

使用計算機: 可

科目代碼: 47112 共 2 頁,第 1 頁

(10%) 1. Suppose that the joint density of X and Y is given by

$$f(x,y) = \frac{e^{-x/y}e^{-y}}{y}, \qquad 0 < x < \infty, 0 < y < \infty.$$

Compute E(X|Y=y).

- 2. Compute the following.
- (5%) (a) Find the coefficient of x^2y^3 in the expansion of $(2x + 3y)^5$.
- (5%) (b) Two cards are randomly selected from an ordinary playing deck. What is the probability that they form a blackjack? That is, what is the probability that one of the cards is an ace and the other one is either a ten, a jack, a queen, or a king?
- (10%) 3. Let the random variable X have the pdf

$$f(x) = \frac{2}{\sqrt{2\pi}}e^{-x^2/2}, \qquad 0 < x < \infty,$$
 zero elsewhere.

Find the mean and variance of X.

(10%) 4. Let X be a random variable with pdf ($\alpha = 50$ is known)

$$f(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}, \quad \alpha > 0, \beta > 0, x > 0.$$

If a random sample of size n=14 has the sample mean 2.3. Find the maximum likelihood estimate of β .

(10%) 5. Let X, Y, Z be independent and uniformly distributed over (0,1). Compute $P(X \ge YZ)$.

東海大學 104 學年度碩士班招生考試試題

考試科目: 統計學 E

應考系組: 統計系甲組

考試日期:104年03月08日第4節

使用計算機: 可

科目代碼: 47112 共 2 頁,第 2 頁

(10%) 6. Let X_1, X_2, X_3, X_4 be i.i.d. uniform (0,1) distribution. If $X_{(1)} < X_{(2)} < X_{(3)} < X_{(4)}$ are the order statistics. Let $R = X_{(4)} - X_{(1)}$. Find $P(R \ge 1/2)$.

- (10%) 7. Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from exponential distribution with pdf $f(x) = \theta e^{-\theta x}$, x > 0, $\theta > 0$. Apply the Rao-Blackwell Theorem to find an uniformly minimum variance unbiased estimator (UMVUE) of θ .
- (10%) 8. Let X_1, X_2, \ldots, X_n be i.i.d. Poisson distribution with parameter one. Let $Z = X_1 + X_2 + \ldots + X_n$. Find the limit distribution of $\sqrt{Z} \sqrt{n}$.
 - 9. Let X_1, X_2, \ldots, X_n be a random sample from $N(0, \theta), 0 < \theta < \infty$.
- (5%) (a) Find the Fisher information $I(\theta)$.
- (5%) (b) Show that the maximum likelihood estimator (MLE) of θ is an efficient estimator of θ .
- (10%) 10. Let X be a random variable whose pmf under H_0 and H_1 is given by

x	1	2	3	4	5	6	7
$f(x H_0)$.01	.01	.01	.01	.01	.01	.94
$f(x H_1)$.06	.05	.04	.03	.02	.01	.79

Use the Neyman-Pearson Lemma to find the most powerful test for H_0 versus H_1 with size $\alpha = .04$. Compute the probability of Type II Error for this test.